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Abstract

Given an n-vertex graph G, a drawing of G in the plane is
a mapping of its vertices into points of the plane, and its
edges into continuous curves, connecting the images of their
endpoints. A crossing in such a drawing is a point where
two such curves intersect. In the Minimum Crossing Number
problem, the goal is to find a drawing of G with minimum
number of crossings. The value of the optimal solution,
denoted by OPT, is called the graph’s crossing number.
This is a very basic problem in topological graph theory,
that has received a significant amount of attention, but is
still poorly understood algorithmically. The best currently
known efficient algorithm produces drawings with O(log2 n)·
(n + OPT) crossings on bounded-degree graphs, while only
a constant factor hardness of approximation is known. A
closely related problem is Minimum Planarization, in which
the goal is to remove a minimum-cardinality subset of edges
from G, such that the remaining graph is planar.

Our main technical result establishes the following connec-

tion between the two problems: if we are given a solution

of cost k to the Minimum Planarization problem on graph G,

then we can efficiently find a drawing of G with at most

poly(d) · k · (k + OPT) crossings, where d is the maximum

degree in G. This result implies an O(n · poly(d) · log3/2 n)-

approximation for Minimum Crossing Number, as well as im-

proved algorithms for special cases of the problem, such as,

for example, k-apex and bounded-genus graphs.

1 Introduction

A drawing of a graph G in the plane is a mapping, in
which every vertex is mapped into a point of the plane,
and every edge into a continuous curve connecting the
images of its endpoints. We assume that no three curves
meet at the same point (except at their endpoints), and
that no curve contains an image of any vertex other
than its endpoints. A crossing in such a drawing is a
point where the drawings of two edges intersect, and the
crossing number of a graph G, denoted by OPTcr(G), is
the smallest integer c, such that G admits a drawing
with c crossings. In the Minimum Crossing Number
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problem, given an n-vertex graph G, the goal is to
find a drawing of G in the plane that minimizes the
number of crossings. A closely related problem is
Minimum Planarization, in which the goal is to find a
minimum-cardinality subset E∗ of edges, such that the
graph G\E∗ is planar. The optimal solution cost of the
Minimum Planarization problem on graph G is denoted
by OPTMP(G), and it is easy to see that OPTMP(G) ≤
OPTcr(G).

The problem of computing the crossing number of a
graph was first considered by Turán [38], who posed
the question of estimating the crossing number of the
complete bipartite graph. Since then, the problem
has been a subject of intensive study. We refer the
interested reader to the expositions by Richter and
Salazar [33], Pach and Tóth [32], and Matoušek [29],
and the extensive bibliography maintained by Vrt’o
[39]. Despite the enormous interest in the problem, and
several breakthroughs over the last four decades, there
is still very little understanding of even some of the most
basic questions. For example, to the time of this writing,
the crossing number of K13 remains unknown.

Perhaps even more surprisingly, the
Minimum Crossing Number problem remains poorly
understood algorithmically. In their seminal paper,
Leighton and Rao [27], combining their algorithm for
balanced separators with the framework of Bhatt and
Leighton [4], gave the first non-trivial algorithm for the
problem. Their algorithm computes a drawing with at
most O(log4 n) · (n+OPTcr(G)) crossings, when the de-
gree of the input graph is bounded. This algorithm was
later improved to O(log3 n) · (n+OPTcr(G)) by Even et
al. [12], and the new approximation algorithm for the
Balanced Cut problem by Arora, Rao and Vazirani [3]
improves it further to O(log2 n) · (n + OPTcr(G)),
thus implying an O(n · log2 n)-approximation
for Minimum Crossing Number on bounded-degree
graphs. Their result can also be shown to give an
O(n · log2 n · poly(dmax))-approximation for general
graphs with maximum degree dmax. We remark that
in the worst case, the crossing number of a graph can
be as large as Ω(n4), e.g. for the complete graph.

On the negative side, computing the crossing number
of a graph was shown to be NP-complete by Garey



and Johnson [13], and it remains NP-complete even
on cubic graphs [18]. Combining the reduction of [13]
with the inapproximability result for Minimum Lin-
ear Arrangement [2], we get that there is no PTAS
for the Minimum Crossing Number problem unless prob-
lems in NP have randomized subexponential time algo-
rithms. Interestingly, even for the very restricted spe-
cial case, where there is an edge e in G, such that
G \ e is planar, the Minimum Crossing Number prob-
lem still remains NP-hard [7]. However, an O(dmax)-
approximation algorithm is known for this special
case, where dmax is the maximum degree in G [21].
Therefore, while the current techniques cannot exclude
the existence of a constant factor approximation for
Minimum Crossing Number, the state of the art gives just
an O(n · poly(dmax) · log2 n)-approximation algorithm.

In this paper, we provide new technical tools that
we hope will lead to a better understanding of the
Minimum Crossing Number problem. We also obtain im-
proved approximation algorithms for special cases where
the optimal solution for the Minimum Planarization
problem is small or can be approximated efficiently.

1.1 Our Results Our main technical re-
sult establishes the following connection be-
tween the Minimum Crossing Number and the
Minimum Planarization problems:

Theorem 1.1. Let G = (V,E) be any n-vertex graph
with maximum degree dmax, and suppose we are given a
subset E∗ ⊆ E of edges, |E∗| = k, such that H = G\E∗
is planar. Then we can efficiently find a drawing of G
with at most O

(
d3
max · k · (OPTcr(G) + k)

)
crossings.

Remark 1.1. Note that there always exists a subset
E∗ of edges of size OPTMP(G) ≤ OPTcr(G), such that
H = G \ E∗ is planar. However, in Theorem 1, we
do not assume that E∗ is the optimal solution to the
Minimum Planarization problem on G, and we allow k
to be greater than OPTcr(G).

A direct consequence of Theorem 1 is that an
α-approximation algorithm for Minimum Planarization
would immediately give an algorithm for drawing
any graph G with O(α2 · d3

max · OPT2
cr(G)) cross-

ings. We note that while this connection between
Minimum Planarization and Minimum Crossing Number
looks natural, it is possible that in the optimal solu-
tion ϕ to the Minimum Crossing Number problem on G,
the induced drawing of the planar subgraph H = G\E∗
is not planar, that is, the edges of H may have to cross
each other (see Figure 1 for an example).

Theorem 1 immediately implies a slightly improved
algorithm for Minimum Crossing Number. In particular,
while we are not aware of any approximation algorithms
for the Minimum Planarization problem, the following is
an easy consequence of the Planar Separator theorem of
Lipton and Tarjan [28]:

Theorem 1.2. There is an efficient O(
√
n log n·dmax)-

approximation algorithm for Minimum Planarization.

The next corollary then follows from combining Theo-
rems 1 and 2, and using the algorithm of [12].

Corollary 1.1. There is an efficient algorithm, that,
given any n-vertex graph G with maximum degree
dmax, finds a drawing of G with at most O(n log n ·
d5
max)OPT2

cr(G) crossings. Moreover, there is an effi-
cient O(n · poly(dmax) · log3/2 n)-approximation algo-
rithm for Minimum Crossing Number.

(a) (b)

Figure 1: (a) Graph G. Red edges belong to E∗, blue
edges to the planar sub-graph H = G\E∗. Any drawing
of G in which the edges of H do not cross each other
has at least 6 crossings. (b) An optimal drawing of G,
with 2 crossings.

Theorem 1 also implies improved algorithms for several
special cases of the problem, that are discussed below.

Nearly-Planar and Apex Graphs. We say that a
graph G is k-nearly planar, if it can be decomposed
into a planar graph H, and a collection of at most k
additional edges. For the cases where the decomposition
is given, or where k is constant, Theorem 1 immediately
gives an efficient O(d3

max · k2)-approximation algorithm
for Minimum Crossing Number. It is worth noting that
although this graph family might seem restricted, there
has been a significant amount of work on the crossing
number of 1-nearly planar graphs. Cabello and Mohar
[7] proved that computing the crossing number remains
NP-hard even for this special case, while Hliněný and
Salazar [21] gave an O(dmax)-approximation. Riskin
[34] gave a simple efficient procedure for computing
the crossing number when the planar sub-graph H
is 3-connected, and Mohar [31] showed that Riskin’s
technique cannot be extended to arbitrary 3-connected



planar graphs. Gutwenger et al. [17] gave a linear-time
algorithm for the case where every crossing is required
to be between e and an edge of G.

A graph G is a k-apex graph iff there are k
vertices v1, . . . , vk, whose removal makes it pla-
nar. Chimani et al. [8] obtained an O(d2

max)-
approximation for Minimum Crossing Number on 1-apex
graphs. Theorem 1 immediately implies an O(d5

max ·k2)-
approximation for k-apex graphs, where either k is con-
stant, or the k apices are explicitly given.

Bounded Genus Graphs. Recall that the genus
of a graph G is the minimum integer g such that G
can drawn on an orientable surface of genus g with no
crossings.

Börözky et al. [5] proved that the crossing number
of a bounded-degree graph of bounded genus is O(n).
Djidjev and Venkatesan [9] show that OPTMP(G) ≤
O(
√
g · n · dmax) for any genus-g graph. Moreover, if

the embedding of G into a genus-g surface is given,
a planarizing set of this size can be found in time
O(n + g). If no such embedding is given, they show
how to efficiently compute a planarizing set of size
O(
√
dmax · g · n · log g).

Hliněný and Chimani [19], building on the work of
Gitler et al. [14] and Hliněný and Salazar [20] gave an
algorithm for approximating Minimum Crossing Number
on graphs that can be drawn “densely enough1” in an
orientable surface of genus g, with an approximation
guarantee of 2O(g)d2

max. We prove the following easy
consequence of Theorem 1 and the result of [19]:

Theorem 1.3. Let G be any graph embedded in an ori-
entable surface of genus g ≥ 1. Then we can effi-
ciently find a drawing of G into the plane, with at most
2O(g) ·dO(1)

max ·OPT2
cr(G) crossings. Moreover, for any g ≥

1, there is an efficient Õ
(
2O(g) ·

√
n
)
-approximation

for Minimum Crossing Number on bounded degree graphs
embedded into a genus-g surface.

We notice that when g is a constant, a drawing of a
genus-g graph on a genus-g surface can be found in
linear time [30, 23].

1.2 Our Techniques We now provide an informal
overview of the proof of Theorem 1. We will use the
words “drawing” and “embedding” interchangeably. We
say that a drawing ψ of the planar graph H = G\E∗ is
planar iff ψ contains no crossings. Let ϕ be the optimal

1More precisely, the density requirement is that the nonsepa-
rating dual edge-width of the drawing is 2Ω(g).

drawing of G, and let ϕH be the induced drawing of H.
For simplicity, let us first assume that the graph H is 3-
vertex connected. Then we can efficiently find a planar
drawing ψ of H, which by Whitney’s Theorem [40] is
guaranteed to be unique. Notice however that the two
drawings ϕH and ψ of H are not necessarily identical,
and in particular ϕH may be non-planar.

We now add the edges e ∈ E∗ to the drawing ψ of
H. The algorithm for adding the edges is very simple.
For each edge e ∈ E∗, we choose the drawing ce that
minimizes the number of crossings between ce and the
images of the edges of H in ψ. This task reduces to
finding the shortest path in the graph dual toH. We can
ensure that the drawings of any pair e, e′ of edges in E∗

cross at most once, by performing an un-crossing step,
which does not increase the number of other crossings.
Let ψ′ denote this new drawing of the whole graph. The
total number of crossings between pairs of edges that
both belong to E∗ is then bounded by k2, and it only
remains to bound the number of crossings between the
edges of E∗ and the edges of H. In order to complete
the analysis, it is enough, therefore, to show, that for
every edge e ∈ E∗, there is a drawing of e in ψ, that has
at most poly(dmax)OPTcr(G) crossings with the edges of
H. Since our algorithm finds the best possible drawing
for each edge e, the bound on the total number of
crossings will follow.

One of our main ideas is the notion of routing edges
along paths. Consider the optimal drawing ϕ of G, and
let e = (u, v) be some edge in E∗, that is mapped into
some curve γe in ϕ. We show that we can find a path
Pe in the graph H, whose endpoints are u and v, such
that, instead of drawing the edge e along γe, we can
draw it along a different curve γ′e, that “follows” the
drawing of the path Pe. That is, we draw γ′e very close
to the drawing of Pe, in parallel to it. Moreover, we
show that this re-routing of the edge e along Pe does not
increase the number of crossings in which it participates
by much. Consider now the drawing of Pe in the planar
embedding ψ of the graph H. We can again draw the
edge e along the embedding of the same path Pe in ψ.
Let γ′′e be the resulting curve. Since the embeddings ϕH
and ψ are different, it is possible that γ′′e participates
in more crossings than γ′e. However, we show that
the number of such new crossings can be bounded by
the number of vertices and edges in Pe, whose local
embeddings are different in ϕ and ψ. We then bound
this number, in turn, by poly(dmax)OPTcr(G).

We now explain the notion of local embeddings in more
detail. Given two drawings ϕH and ψ of the graph
H, we say that a vertex v ∈ V (H) is irregular iff the
ordering of its adjacent edges, as their images enter v, is



different in the two drawings. In other words, the local
drawing around the vertex v is different in ϕH and ψ (see
Figure 2(a)). We say that an edge e = (u, v) ∈ E(H) is
irregular iff both of its endpoints are not irregular, but
their orientations are different. That is, the orderings
of the edges adjacent to each one of the two endpoints
are the same in both ϕH and ψ, but say, for vertex v,
both orderings are clock-wise, while for vertex u, one
is clock-wise and the other is counter-clock-wise (see
Figure 2(b)). In a way, the number of irregular edges
and vertices measures the difference between the two
drawings. We show that, on the one hand, if H is
3-vertex connected, and ψ is a planar embedding of
H, then the number of irregular vertices and edges is
bounded by roughly the number of crossings in ϕH ,
which is in turn bounded by OPTcr(G). On the other
hand, we show that for each edge e ∈ E∗, the number
of new crossings incurred by the curve γ′′e is bounded by
the total number of irregular edges and vertices on the
path Pe, thus obtaining the desired bound.

Assume now that H is not 3-vertex connected. In this
case, it is easy to see that the number of irregular
vertices and edges cannot be bounded by the number
of crossings in ϕH anymore. In fact, it is possible that
both ψ and ϕH are planar drawings of H, so the number
of crossings in ϕH is 0, while the number of irregular
vertices may be large (see Figure 3 for an example).
However, if the original graphG was 3-vertex connected,
then for any 2-vertex cut (u, v) in H, there is an edge
e ∈ E∗ connecting the resulting two components of
H \ {u, v}. We use this fact to find a specific planar
drawing ψ′ of H, that is “close” to ϕH , in the sense
that, if we define the irregular edges and vertices with
respect to the embeddings ϕH , ψ′ of H, then we can
bound their number by the number of crossings in ϕH .

Finally, if G is not 3-vertex connected, then we first
decompose it into 3-vertex connected components, and
then apply the above algorithm to each one of the
components separately. In the end, we put all the
resulting drawings together, while only losing a small
additional factor in the number of crossings.

1.3 Other Related work Although it is impos-
sible to summarize here the vast body of work on
Minimum Crossing Number, we give a brief overview of
some of the highlights, and related results.

Exact algorithms. Grohe [15], answering a question
of Downey and Fellows [10], proved that the crossing
number is fixed-parameter tractable. In particular, for
any fixed number of crossings his algorithm computes
an optimal drawing in O(n2) time. Building upon the
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Figure 2: Irregular vertices and edges.

Figure 3: Example of planar drawings ϕH and ψ of
graph H. Irregular vertices are shown in red.

breakthrough result of Mohar [30] for embedding graphs
into a surface of bounded genus, Kawarabayashi and
Reed [24] gave an improved fixed-parameter algorithm
with running time O(n).

Bounds on the crossing number of special
graphs. Ajtai et al. [1], and independently Leighton
[26], settling a conjecture of Erdös and Guy [11], proved
that every graph with m ≥ 4n edges has crossing num-
ber Ω(m3/n2). Börözky et al. [5] proved that the cross-
ing number of a bounded-degree graph of bounded genus
is O(n). This bound has been extended to all families
of bounded-degree graphs that exclude a fixed minor
by Wood and Telle [41]. Spencer and Tóth [35] gave
bounds on the expected value of the crossing number of
a random graph.

Organization Most of this paper is dedicated to prov-
ing Theorem 1. We start in Section 2 with preliminaries,
where we introduce some notation and basic tools. We
then prove Theorem 1 in Section 3. We prove Theorem 2
and Corollary 1 in Section 4. The proof of Theorem 3
appears in the full version of the paper, available from
the authors’ web pages.



2 Preliminaries

In this section we provide some basic definitions and
tools used in the proof of Theorem 1. In order to avoid
confusion, throughout the paper, we denote the input
graph by G = (V,E), with |V | = n, and maximum
degree dmax. We also denote H = G \ E∗, the planar
sub-graph of G (where E∗ is the set of edges from
the statement of Theorem 1), and by ϕ the optimal
drawing of G with OPTcr(G) crossings. When stating
definitions or results for general arbitrary graphs, we
will be denoting them by G and H, to distinguish them
from the specific graphs G and H.

We use the words “drawing” and “embedding” inter-
changeably. Given any graph G, a drawing ϕ of G, and
any sub-graph H of G, we denote by ϕH the drawing of
H induced by ϕ, and by crϕ(G) the number of crossings
in the drawing ϕ of G. For any pair E1, E2 ⊆ E(G) of
subsets of edges, we denote by crϕ(E1, E2) the number
of crossings in ϕ in which images of edges of E1 and
edges of E2 intersect, and by crϕ(E1) the number of
crossings in ϕ between pairs of edges that both belong
to E1. Finally, for any curve γ, we denote by crϕ(γ,E1)
the number of crossings between γ and the images of the
edges of E1, and crϕ(γ,H) denotes crϕ(γ,E(H)). We
will omit the subscript ϕ when clear from context. If G
is a planar graph, and ϕ is a drawing of G that contains
no crossings, then we say that ϕ is a planar drawing of
G.

For the sake of brevity, we write P : u  v to denote
that a path P connects vertices u and v. Similarly, if we
have a drawing of a graph, we write γ : u v to denote
that a curve γ connects the images of vertices u and v
(curve γ may not be a part of the current drawing). In
order to avoid confusion, when a curve γ is a part of a
drawing ϕ of some graph G, we write γ ∈ ϕ. We denote
by Γ(ϕ) the set of all curves that can be added to the
drawing ϕ of G. In other words, these are all curves that
do not contain images of vertices of G (except as their
endpoints), and do not contain any crossing points of ϕ.
Finally, for a graph G = (V,E), and subsets V ′ ⊆ V ,
E′ ⊆ E of its vertices and edges respectively, we denote
by G\V ′, G\E′ the sub-graphs of G induced by V \V ′,
and E \ E′, respectively.

Definition 2.1. For any graph G = (V,E), a subset
V ′ ⊆ V of vertices is called a c-separator, iff |V ′| = c,
and the graph G \ V ′ is not connected. We say that G
is c-connected iff it does not contain any c′-separators,
for any c′ < c.

We will be using the following two well-known results:

Theorem 2.1. (Whitney [40]) Every 3-connected pla-
nar graph has a unique planar embedding.

Theorem 2.2. (Hopcroft-Tarjan [22]) For any graph
G, there is an efficient algorithm to determine whether
G is planar, and if so, to find a planar drawing of G.

Irregular Vertices and Edges Given any pair ϕ,ψ of
drawings of a graph G, we measure the distance between
them in terms of irregular edges and irregular vertices:

Definition 2.2. We say that a vertex x of G is ir-
regular iff its degree is greater than 2, and the circular
ordering of the edges incident on it, as their images en-
ter x, is different in ϕ and ψ (ignoring the orientation).
Otherwise we say that v is regular. We denote the set
of irregular vertices by IRGV (ϕ,ψ). (See Figure 2(a)).

Definition 2.3. For any pair (x, y) of vertices in G,
we say that a path P : x y in G is irregular iff x and
y have degree at least 3, all other vertices on P have
degree 2 in G, vertices x and y are regular, but their
orientations differ in ϕ and ψ. That is, the orderings
of the edges adjacent to x and to y are identical in both
drawings, but the pairwise orientations are different: for
one of the two vertices, the orientations are identical
in both drawings (say clock-wise), while for the other
vertex, the orientations are opposite (one is clock-wise,
and the other is counter-clock-wise). An edge e is an
irregular edge iff it is the first or the last edge on an
irregular path. In particular, if the irregular path only
consists of edge e, then e is an irregular edge (see
Figure 2(b)). If an edge is not irregular, then we say
that it is regular. We denote the set of irregular edges
by IRGE(ϕ,ψ).

Routing along Paths. One of the central concepts in
our proof is that of routing along paths. Let G be any
graph, and ϕ any drawing of G. Let e = (u, v) be any
edge of G, and let P : u  v be any path connecting
u to v in G \ {e}. It is possible that the image of P
crosses itself in ϕ. We will first define a very thin strip
SP around the image of P in ϕ. We then say that the
edge e is routed along the path P , iff its drawing follows
the drawing of the path P inside the strip SP , possibly
crossing P .

In order to formally define the strip SP , we first consider
the graph G′, obtained from G, by replacing every edge
of G with a 2-path containing 2crϕ(G) inner vertices.
The drawing ϕ of G then induces a drawing ϕ′ of G′,
such that, if P ′ is the path corresponding to P in G′,
then every edge of G′ crosses the image of P ′ at most



once; every edge of G′ \ P ′ has at most one endpoint
that belongs to P ′; and if an image of e 6∈ P ′ crosses P ′,
then no endpoint of e belongs to P ′. Let E1 denote the
subset of edges of G′ \P ′ whose images cross the image
of P ′, let E2 denote the subset of edges of P ′ whose
images cross the images of other edges in P ′, and let
E3 denote the set of edges in G′ that have exactly one
endpoint belonging to P ′.

We now define a thin strip SP ′ around the drawing
of path P ′ in ϕ′, by adding two curves, γ′L and γ′R,
immediately to the left and to the right of the image
of P ′ respectively, that follow the drawing of P ′. Each
edge in E1 is crossed exactly once by γ′L, and once by
γ′R. Each edge in E3 is crossed exactly once by either γ′R
or γ′L. For each pair (e, e′) of edges in E2 whose images
cross, γ′L and γ′R will both cross each one of the edges
e and e′ exactly once. Curves γ′L and γ′R do not have
any other crossings with the edges of G′. The region
of the plane between the drawings of γ′L and γ′R, which
contains the drawing of P ′, defines the strip S′P . We
let SP denote the same strip, only when added to the
drawing ϕ of G. Let γL and γR denote the two curves
that form the boundary of SP , and let γ ∈ {γL, γR}.
Then the crossings between γ and the edges of G can be
partitioned into four sets, C1, C2, C3, C4 (see Figure 4),
where: (1) There is a 1 : 1 mapping between C1 and
the crossings between the edges of P and the edges of
G \ P ; (2) For each edge e′ 6∈ P that has exactly one
endpoint in P , there is at most one crossing between γ
and e′ in C2, and there are no other crossings in C2; (3)
For each edge e′ 6∈ P that has exactly two endpoints in
P , there are at most two crossings of γ and e′ in C3,
and there are no other crossings in C3; and (4) for each
crossing between a pair e, e′ ∈ P of edges, there is one
crossing between γ and e, and one crossing between γ
and e′. Additionally, if P crosses itself c times, then γ
also crosses itself c times.

Definition 2.4. We say that the edge e is routed along
the path P , iff its drawing follows the drawing of path
P inside the strip SP , in parallel to the drawing of P ,
except that it is allowed to cross the path P .

3 Proof of Theorem 1

The proof consists of two steps. We first assume that
the input graph G is 3-vertex connected, and prove a
slightly stronger version of Theorem 1 for this case.
Next, we show how to reduce the problem on general
graphs to the 3-vertex connected case, while only losing
a small additional factor in the number of crossings.

2

1
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u v

°
44
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Figure 4: Strip Sp and the four types of crossing between
γ and edges of G. Crossings in C1, C2, C3 and C4 are
labeled with “1”, “2”, “3” and “4” respectively. Path P
is shown in solid line, dotted lines correspond to other
edges of G.

3.1 Handling 3-connected Graphs In this section
we assume that the input graph G is 3-vertex connected,
and we prove a slightly stronger version of Theorem 1
for this special case, that is summarized below.

Theorem 3.1. Let G,H and E∗ be as in Theorem 1,
and assume that G is 3-connected and has no parallel
edges. Then we can efficiently find a drawing of G with
at most O (dmax · k · (OPTcr(G) + k)) crossings.

Notice that we can assume w.l.o.g. that graph H is
connected. Otherwise, we can choose an edge e ∈
E∗ whose endpoints belong to two distinct connected
components of H, remove e from E∗ and add it to H. It
is easy to see that this operation preserves the planarity
of H, and we can repeat it until H becomes connected.
We therefore assume from now on that H is connected.

Recall that ϕ denotes the optimal drawing of G, and
ϕH is the drawing of H induced by ϕ. Since the
graph H is planar, we can efficiently find its planar
drawing, using Theorem 5. However, since H is not
necessarily 3-connected, there could be a number of such
drawings, and we need to find one that is “close” to ϕH.
We use the following theorem, whose proof appears in
Appendix.

Theorem 3.2. We can efficiently find a planar draw-
ing ψ of H, such that

|IRGV (ψ,ϕH)| = O(OPTcr(G) + k)
|IRGE(ψ,ϕH)| = O(dmax)(OPTcr(G) + k).

We are now ready to describe the algorithm for finding
a drawing of G. We start with the planar embedding
ψ of H, guaranteed by Theorem 7. For every edge



e = (u, v) ∈ E∗, we add an embedding of e to the
drawing ψ of H, via a curve γe ∈ Γ(ψ), γe : u  v,
that crosses the minimum possible number of edges of
H. Such a curve can be computed as follows. Let
Hdual be the dual graph of the drawing ψ of H. Every
curve γ ∈ Γ(ψ), γ : u  v, defines a path in Hdual.
The length of the path, measured in the number of
edges of Hdual it contains, is exactly the number of
edges of H that γ crosses. Similarly, every path in
Hdual corresponds to a curve in Γ(ψ). Let U be the
set of all faces of ψ (equivalently, vertices of Hdual)
whose boundaries contain u, and let V be the set of all
faces whose boundaries contain v. We find the shortest
path P(u,v) between sets U and V in Hdual, and the
corresponding curve γ(u,v) : u  v in Γ(ψ). Clearly,
the number of crossings between γ(u,v) and the edges
of H is minimal among all curves connecting u and v
in Γ(ψ). By slightly perturbing the lengths of edges in
Hdual, we may assume that for every pair of vertices
in Hdual, there is exactly one shortest path connecting
them. In particular, any pair of such shortest paths may
share at most one consecutive segment. Consequently,
for any pair e, e′ ∈ E∗ of edges, the drawings γe, γe′ that
we have obtained cross at most once.

Let ψ′ denote the union of ψ with the drawings γe
of edges e ∈ E∗ that we have computed. It now
only remains to bound the number of crossings in
ψ′. Clearly, crψ′(G) = crψ′(E∗) + crψ′(E∗, E(H)) ≤
k2 +

∑
e∈E∗ crψ′(γe, E(H)). In order to bound

crψ′(γe, E(H)), we use the following theorem, whose
proof appears in the next section.

Theorem 3.3. Let ϕ and ψ be two drawings of any
planar connected graph H, whose maximum degree is
dmax, where ψ is a planar drawing. Then for every
curve γ ∈ Γ(ϕ), γ : u  v there is a curve γ′ ∈ Γ(ψ),
γ′ : u  v, that participates in at most O(crϕ(H) +
crϕ(γ,E(H)) + |IRGE(ϕ,ψ)|+ dmax|IRGV (ϕ,ψ)|) cross-
ings.

In other words, the number of additional crossings
incurred by γ′ is roughly bounded by the total number
of crossings in ϕ, and the difference between the two
drawings, that is, the number of irregular vertices and
edges.

Since the optimal embedding ϕ of G contains an em-
bedding of every edge e ∈ E∗, Theorem 8 guaran-
tees that for every edge e = (u, v) ∈ E∗, there is
a curve γ′e : u  v in Γ(ψ), that participates in
at most O(crϕ(H) + crϕ(e, E(H)) + |IRGE(ϕ,ψ)| +
dmax|IRGV (ϕ,ψ)|) ≤ O(OPTcr(G) + |IRGE(ϕ,ψ)| +
dmax|IRGV (ϕ,ψ)|) crossings. Combining this with The-

orem 7, the number of crossings between γ′e and E(H)
is bounded by O(dmax)(OPTcr(G) + k). Since for
each edge e ∈ E∗, our algorithm chooses the optimal
curve γe, we are guaranteed that γe participates in at
most O(dmax)(OPTcr(G) + k) crossings with edges of
H. Summing up over all edges e ∈ E∗, we obtain
that crψ′(G) ≤ k2 + k · O(dmax)(OPTcr(G) + k) ≤
O(dmax · k · (OPTcr(G) + k)), as required. In order to
complete the proof of Theorem 6, it now only remains
to prove Theorem 8.

3.2 Proof of Theorem 8: Routing along Paths
The proof consists of two steps. In the first step, we
focus on the drawing ϕ of H, and we show that for any
curve γ : u  v in Γ(ϕ), there is a path P : u  v in
H, and another curve γ∗ : u  v in Γ(ϕ) routed along
P in ϕ, such that the number of crossings in which γ∗

is involved is small. In the second step, we consider
the planar drawing ψ of H, and show how to route a
curve γ′ : u  v along the same path P in ψ, so that
the number of crossings is suitably bounded. The next
proposition handles the first step of the proof.

Proposition 3.1. Let γ : u  v be any curve in
Γ(ϕ), where ϕ is a drawing of H. Then there is a path
P : u v in H, and a curve γ∗ : u v in Γ(ϕ) routed
along P , such that crϕ(γ∗, H) ≤ O(crϕ(H)+crϕ(γ,H)).
Moreover, γ∗ does not cross the images of the edges of
P . Path P is not necessarily simple, but an edge may
appear at most twice on P .

Proof. Consider the drawing ϕ of H, together with the
curve γ. Let E1 ⊆ E(H) be the subset of edges whose
images cross the images of other edges of H, and let
E2 ⊆ E(H) \ E1 be the subset of edges whose images
cross γ and that are not in E1. Let H ′ = H \ (E1∪E2).
Note that ϕH′ is a planar drawing of H ′, and γ does
not cross any edges of H ′. Therefore, vertices u and v
lie on the boundary of one face, denoted by F , of ϕH′ .
Without loss of generality, we may assume that F is
the outer face of ϕH′ . The boundary of F consists of
one or several connected components. Let B1, . . . , Br
be the boundary walks of the face F (where r ≥ 1 is the
number of connected components): each Bi is the (not
necessarily simple) cycle obtained by walking around
the boundary of the ith connected component, if the
component contains at least 2 vertices; and it is a single
vertex otherwise.

Consider two cases. First, assume that u and v are
connected in H ′, and so they both belong to the same
component Bi. We then let P be one of the two
segments of Bi that connect u and v. Notice that while
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Figure 5: Routing the curve γ∗ : u v.

P is not necessarily simple, each edge appears at most
twice on it. We let γ∗ be a curve drawn along the path
P inside the face F . Notice that the only edges that γ∗

crosses in the drawing ϕ of H, are the edges of E1 ∪E2

that have at least one endpoint on P . Each such edge is
crossed at most twice by γ∗ (once for each endpoint that
belongs to P ). Therefore, crϕ(γ∗, H) ≤ O(|E1|+|E2|) ≤
O(crϕ(H) + crϕ(γ,H)). Assume now that u and v are
not connected in H ′, and assume w.l.o.g. that u ∈ B1

and v ∈ B2. Let L be a minimal set of edges of E1∪E2,
such that u and v are connected in H ′ ∪ L. Each edge
e ∈ L connects two distinct components Bi and Bj
(as otherwise we could remove e without affecting the
connectivity of H ′ ∪ L). In particular, the drawings of
all edges of L in ϕ lie inside the face F . Consider the
following graph H∗: each vertex of H∗ corresponds to
a component Bi, for 1 ≤ i ≤ r, and the edges of H∗

are the edges of L connecting these components. Since
u and v are connected in H ′ ∪ L, vertices representing
B1 and B2 belong to the same connected component C
of H∗. Moreover, because of the minimality of L, this
connected component is a simple path P ′ connecting
the vertices representing B1 and B2 in H∗.

Denote the edges of this path by e1, . . . , eq−1; denote
its vertices by Bi1 ≡ B1, Bi2 , . . . , Biq ≡ B2; each edge
ej , for 1 ≤ j ≤ q − 1, corresponds to an edge e′j ∈ L,
that connects a pair (xj , yj) of vertices, where xj ∈ Bij ,
yj ∈ Bij+1 , in H. We denote u = y0, v = xq. Notice
that since P ′ is simple, each component Bj , 1 ≤ j ≤ r
appears at most once on the path. We now define
the path P and the curve γ∗. The path P is defined
as follows: P = (P1, e

′
1, P2, e

′
2, . . . , e

′
q−1, Pq), where for

each j : 1 ≤ j ≤ q, Pj is obtained by traversing the
boundary Bij in the clock-wise direction from yj−1 to
xj . The curve γ∗ : u  v is simply routed along Pj on
the inside of the face F . That is, curve γ∗ never crosses
the images of the edges of H ′ (see Figure 5).

We now bound the number of edges of H, whose images
in ϕ are being crossed by γ∗. We partition the crossings
in which γ∗ participates into four sets C1, C2, C3, C4,

like in the definition of routing along paths in Section 2.
The only edges incident on vertices of path P that γ∗

crosses are the edges in E1 ∪ E2, and each such edge
contributes at most two crossings to C2 ∪C3, while the
number of crossings in C1 ∪C4 is bounded by 2crϕ(H).
Therefore, crϕ(γ∗, H) ≤ O(|E1| + |E2| + crϕ(H)) =
O(crϕ(H) + crϕ(γ,H)).

We now focus on the other embedding, ψ ofH, and show
how to obtain the final curve γ′ : u v, γ′ ∈ Γ(ψ), that
participates in a small number of crossings.

Proposition 3.2. There is a curve γ′ : u  v in
Γ(ψ), that has no self-crossings, and participates in at
most crϕ(γ∗, H) + O(|IRGE(ϕ,ψ)| + dmax|IRGV (ϕ,ψ)|)
crossings with the edges of H.

Proof. We will route γ′ along the path P in ψ. Since an
edge may appear at most twice on P , path P may visit
a vertex at most dmax times. We will assume however
that P visits every irregular vertex at most once, by
changing P as follows: whenever an irregular vertex x
appears more than once on P , we create a shortcut, by
removing the segment of P that lies between the two
consecutive appearances of x on P . As a result, in the
final path P , each edge appears at most twice, and each
irregular vertex at most once.

We will route the curve γ′ along P , but we will allow
it to cross the image of the path P . Therefore, we only
need to specify, for each edge e ∈ P , whether γ′ crosses
it, and if not, on which side of e it is routed. Since ψ is
planar, the edges of P do not cross each other.

We partition the path P into consecutive segments
τ0, σ1, τ1, σ2, . . . , σt, τt, where for each j : 1 ≤ j ≤ t,
σj contains regular edges only, and all its vertices are
regular, except perhaps the first and the last. For
each j : 0 ≤ j ≤ t, either τj contains one or several
consecutive irregular edges connecting the last vertex of
σj and the first vertex of σj+1; or it contains a single
irregular vertex, which serves as the last vertex of σj
and the first vertex of σj+1.

Consider some such segment σj , and a thin strip S =
Sσj

around this segment. Then the parts of the
drawings of the edges incident on the vertices of σj ,
that fall inside S are identical in both ϕ and ψ (except
possibly for the edges incident on the first and the last
vertex of σj). We can therefore route γ′ along the same
side of σj along which γ∗ is routed. If necessary, we may
need to cross the path P once for each consecutive pair
of segments, if the routings are performed on different
sides of P . Let γ∗j and γ′j denote the segments of



γ∗ and γ′, respectively, that are routed along σj , and
include crossings with all edges incident on σj . It is
easy to see that the difference crψ(γ′j , H) − crϕ(γ∗j , H)
is bounded by 2dmax: we pay at most dmax for crossing
the edges incident on each endpoint of σj , which may be
an irregular vertex. We may additionally pay 1 crossing
for each irregular edge on P . Since each irregular vertex
appears at most once on P , and each irregular edge at
most twice, crψ(γ′, H)− crϕ(γ∗, H) ≤ O(|IRGE(ϕ,ψ)|+
dmax|IRGV (ϕ,ψ)|). Finally, if γ′ crosses itself, we can
simply short-cut it by removing all resulting loops.

Combining Propositions 1 and 2, we get that
crϕ(γ∗, H) ≤ O(crϕ(H) + crϕ(γ,H)), and
crψ(γ′, H) ≤ crϕ(γ∗, H) + O(|IRGE(ϕ,ψ)| +
dmax|IRGV (ϕ,ψ)|) ≤ O(crϕ(H) + crϕ(γ,H) +
|IRGE(ϕ,ψ)|+ dmax|IRGV (ϕ,ψ)|).

3.3 Non 3-Connected Graphs We briefly explain
how to reduce the general case to the 3-connected
case. We decompose the graph into a collection of
sub-graphs. For each sub-graph, we find a drawing
separately, and then combine them together to obtain
the final solution. Each one of the sub-graphs is either
a 3-connected graph, for which we can find a drawing
using Theorem 6, or it can be decomposed into a planar
graph plus one additional edge. In the latter case, we
employ the algorithm of Hlineny and Salazar [21] to find
an O(dmax)-approximate drawing. The detailed proof
of this part appears in the full version of this paper.

4 Improved Algorithm for General Graphs

In this section we prove Theorem 2 and Corollary 1. We
will rely on the Planar Separator Theorem of Lipton and
Tarjan [28], and on the approximation algorithm for the
Balanced Cut problem of Arora, Rao and Vazirani [3],
that we state below.

Theorem 4.1. (Planar Separator Theorem [28])
Let G be any n-vertex planar graph. Then there is
an efficient algorithm to partition the vertices of G
into three sets A,B,C, such that |A|, |C| ≤ 2n/3,
|B| ≤ O(

√
n), and there are no edges in G connecting

the vertices of A to the vertices of C.

Theorem 4.2. (Balanced Cut [3]) Let G be any n-
vertex graph, and suppose there is a partition of vertices
of G into two sets, A and C, with |A|, |C| ≤ 2n/3,
and |E(A,C)| = c. Then there is an efficient algo-
rithm to find a partition (A′, C ′) of vertices of G, such
that |A′|, |C ′| ≤ αn for some constant α < 1, and
|E(A′, C ′)| ≤ O(c

√
log n).

Combining the two theorems together, we get the
following corollary, whose proof appears in the full
version of the paper.

Corollary 4.1. Let G be any n-vertex graph with
maximum degree dmax. Then there is an efficient
algorithm to partition the vertices of G into two sets
A′, C ′, with |A′|, |C ′| ≤ αn for some constant α, such
that |E(A′, C ′)| ≤ O(

√
log n)(dmax

√
n+ OPTMP(G)).

We are now ready to describe the algorithm from
Theorem 2. The algorithm consists of O(log n) iter-
ations, and in each iteration i, we are given a col-
lection Gi1, . . . , G

i
ki

of disjoint sub-graphs of G, with
ki ≤ OPTMP(G). The number of vertices in each such
sub-graph is bounded by ni = αi−1n, where α < 1
is the constant from Corollary 2. In the input to the
first iteration, k1 = 1, and G1

1 = G. Iteration i, for
i ≥ 1 is performed as follows. Consider some graph Gij ,
for 1 ≤ j ≤ ki. We apply Corollary 2 to this graph,
and denote by Hj , H

′
j the two sub-graphs of Gij induced

by A′ and C ′, respectively. The number of vertices in
each one of the subgraphs is at most α · |V (Gij)| ≤
αni = ni+1. We denote by Eij the corresponding set
of edges E(A′, C ′), and let Ei =

⋃ki

j=1E
i
j . Since for

all j, |Eij | ≤ O(
√

log n)(dmax
√
ni + OPTMP(Gij)), and∑ki

j=1 OPTMP(Gij) ≤ OPTMP(G), we get that |Ei| ≤
O(
√

log n)(kidmax
√
ni + OPTMP(G)) ≤ O(dmax

√
log n ·√

ni)OPTMP(G), as ki ≤ OPTMP(G). Finally, consider
the collection Gi+1 =

{
H1, H

′
1, . . . ,Hki

, H ′ki

}
of the new

graphs, and let G′i+1 ⊆ Gi+1 contain the non-planar
graphs. Then |G′i+1| ≤ OPTMP(G), and the graphs in
G′i+1 become the input to the next iteration. Since we
can efficiently check whether a graph is planar, the set
G′i+1 can be computed efficiently.

The algorithm stops, when all remaining sub-graphs
contain at most O(

√
log n) edges. We then add the

edges of all remaining sub-graphs to set Ei
∗
, where

i∗ = O(log n) is the last iteration. Our final solution
is E′ =

⋃i∗
i=1E

i, and its cost is bounded by |E′| ≤∑i∗

i=1 |Ei| ≤
∑i∗

i=1O(dmax
√

log n · √ni)OPTMP(G) ≤
O(dmax

√
n log n)OPTMP(G), since the values

√
ni form

a decreasing geometric series for i ≥ 1. This finishes
the proof of Theorem 2. We now show how to obtain
Corollary 1. Combining Theorems 1 and 2, we imme-
diately obtain an efficient algorithm for drawing any
graph G with at most O(n log n · d5

max)OPT2
cr(G) cross-

ings. In order to get the approximation guarantee of
O(n · poly(dmax) · log3/2 n), we use an extension of the
result of Even et al. [12] to arbitrary graphs, that we
formulate in the next theorem, whose proof appears in
the full version of the paper.



Theorem 4.3. (Extension of [12]) There is an effi-
cient algorithm that, given any n-vertex graph G with
maximum degree dmax, outputs a drawing of G with
O(poly(dmax) log2 n)(n+ OPTcr(G)) crossings.

We run our algorithm, and the algorithm given by
Theorem 11 on the input graphG, and output the better
of the two solutions. If OPTcr(G) ≥

√
log n, then the

algorithm of Even et al. is an O(n·poly(dmax)·log3/2 n)-
approximation. Otherwise, our algorithm gives an
O(n · poly(dmax) · log3/2 n)-approximation.
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pair-crossing number, and expansion, J. Comb. Theory,
Ser. B, 92 (2004), pp. 99–113.

[26] F. T. Leighton, Complexity issues in VLSI: optimal
layouts for the shuffle-exchange graph and other net-
works, MIT Press, 1983.

[27] F. T. Leighton and S. Rao, Multicommodity max-
flow min-cut theorems and their use in designing
approximation algorithms, Journal of the ACM, 46
(1999), pp. 787–832.

[28] R. J. Lipton and R. E. Tarjan, A separator theorem
for planar graphs, SIAM Journal on Applied Mathe-
matics, 36 (1979), pp. 177–189.
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A Block Decompositions

In this section we introduce the notion of blocks, and
present a theorem for computing block decompositions
of graphs, that we will later use to handle graphs that
are not 3-connected.

Definition A.1. Let G = (V,E) be a 2-connected
graph. A subgraph B = (V ′, E′) of G is called a block
iff:

• V \ V ′ 6= ∅ and |V ′| ≥ 3;

• There are two special vertices u, v ∈ V ′, called
block end-points and denoted by I(B) = (u, v),
such that there are no edges connecting vertices in
V \ V ′ to V ′ \ {u, v} in G, that is, E(V \ V ′, V ′ \
{u, v}) = ∅. All other vertices of B are called inner
vertices;

• B is the subgraph of G induced by V ′, except that

it does not contain the edge {u, v} even if it is
present in G.

Notice that every 2-separator (u, v) of G defines
at least two internally disjoint blocks B′, B′′ with
I(B′), I(B′′) = (u, v).

Definition A.2. Let F be a laminar family of sub-
graphs of G, and let T be the decomposition tree asso-
ciated with F . We say that F is a block decomposition
of G, iff:

• The root of the tree T is G, and all other vertices
of T are blocks. For consistency, we will call the
root vertex “block” as well.

• For each block B ∈ F , let B̃ be the graph obtained
by replacing each child B′ of B with an artificial
edge connecting its endpoints. Let B̃′ be the graph
obtained from B̃ by adding an artificial edge con-
necting the endpoints of B (for the root vertex G,
G̃′ = G̃). Then B̃′ is 3-connected.

• If a block B ∈ F has exactly one child B′ then
I(B) 6= I(B′).

The proof of the next theorem appears in the full version
of the paper.

Theorem A.1. Given a 2-connected graph G = (V,E)
with |V | ≥ 3, we can efficiently find a laminar block
decomposition F of G, such that for every vertex v ∈ V
that participates in any 2-separator (u, v) of G, one of
the following holds: Either v is an endpoint of a block
B ∈ F ; or v has exactly two neighbors in G, and there
is an edge (u′, v) ∈ E, such that u′ is an endpoint of a
block B ∈ F .

B Proof of Theorem 7

We subdivide the sets of irregular vertices and edges
into several subsets, that are then bounded separately.
We start by defining the following sets of vertices and
edges.

S1 = {u ∈ V (H) : u is a 1-separator in H}
E1 = {e ∈ E(H) : e is incident on some u ∈ S1}

Let C be the set of all 2-connected components of H.
For every 2-connected component X ∈ C, we define

S2(X) = {u ∈ V (X) \ S1 : ∃v ∈ V (X)
s.t. (u, v) is a 2-separator in X}

E2(X) = {e ∈ E(X) : e has both end-points in S2(X)}



Let S2 = ∪X∈CS2(X) and E2 = ∪X∈CE2(X). We start
by showing that the number of vertices and edges in sets
S1 and E1, respectively, is small, in the next lemma,
whose proof appears in Section B.1.

Lemma B.1. (Irregular 1-separators) We
can bound the sizes of sets S1 and E1 as follows:
|S1| = O(|E∗|) and |E1| = O(dmax · |E∗|). Moreover,∑
C∈C |S1 ∩ V (C)| ≤ 9|E∗|.

Next, we show that for any planar drawing ψ of H,
the number of irregular vertices and edges that do not
belong to sets S1∪S2, and E1∪E2, respectively is small,
in the next lemma, whose proof appears in Section B.2.
Given any drawing ϕ of any graph H, we denote by
pcrϕ(H) the number of pairs of crossing edges in the
drawing ϕ of H. Clearly, pcrϕ(H) ≤ crϕ(H) for any
drawing ϕ of H.

Lemma B.2. Let H be any planar graph, and let the
sets S1, S2 of vertices and the sets E1, E2 of edges be
defined as above for H. Let ϕ be an arbitrary drawing
of H and ψ be a planar drawing of H. Then

|IRGV (ψ,ϕ) \ (S1 ∪ S2)|+ |IRGE(ψ,ϕ) \ (E1 ∪ E2)|
= O(pcrϕ(H)) = O(crϕ(H)).

Finally, we need to bound the number of irregular
vertices in S2 and irregular edges in E2. The bound does
not necessarily hold for every drawing ψ. However, we
show how to efficiently find a planar drawing, for which
we can bound this number, in the next lemma.

Lemma B.3. (Irregular 2-separators) Let G, H,
E∗ and ϕ be as in Theorem 7. Given G, H and E∗ (but
not ϕ), we can efficiently compute a planar drawing ψ
of H, such that

|IRGV (ψ,ϕH) ∩ S2| = O(OPTcr(G) + |E∗|).

and

|IRGE(ψ,ϕH) ∩ E2| = O(dmax)(OPTcr(G) + |E∗|)

Theorem 7 then immediately follows from Lemmas 1,
2, and 3, where we apply Lemma 2 to the drawings ψ
and ϕH of the graph H. In the following subsections,
we present the proofs of Lemmas 1, 2 and 3.

B.1 Proof of Lemma 1 Consider the following tree
T : the vertices of T are S1 ∪ {vC | C ∈ C}, and there
is an edge between vC and u ∈ S1 iff u ∈ V (C). We

partition the set {vC : C ∈ C} into three subsets: set
D1 contains the leaf vertices of T , set D2 contains
vertices whose degree in T is 2, and set D3 contains all
remaining vertices. Since G is 3-connected, for every
component C with vC ∈ D1 ∪ D2, there is an edge
e ∈ E∗ with one end-point in C. We charge edge
e for C. Clearly, we charge each edge at most twice
(at most once for each of its endpoints), and therefore,
|D1| + |D2| ≤ 2|E∗|. Since the number of vertices of
degree greater than 2 is bounded by the number of leaves
in any tree, we get that |D3| ≤ |D1| ≤ 2|E∗|, and so
|C| ≤ |D1| + |D2| + |D3| ≤ 4|E∗|. Since the parent of
every vertex u ∈ S1 in the tree is a vertex of the form vC
for C ∈ C, this implies that |S1| ≤ |C| + 1 ≤ 4|E∗| + 1,
and |E1| ≤ dmax|S1| ≤ O(dmax)|E∗|.

We now bound the sum
∑
C∈C |S1 ∩ V (C)|. The sum

equals the number of pairs (C, u), where C ∈ C and
u ∈ S1 ∩ V (C). The number of such pairs in the
tree T is bounded by the number of edges in the tree,
which in turn is bounded by the number of vertices,
|S1|+|C| ≤ 8|E∗|+1. This finishes the proof of Lemma 1.

B.2 Proof of Lemma 2 In this section we bound
on the number of irregular vertices and irregular edges
that do not belong to S1∪S2 and E1∪E2, respectively.
Lemma 4 bounds the number of irregular vertices and
Lemma 5 the number of irregular edges.

Lemma B.4. Let ϕ be an arbitrary drawing of H and
let ψ be a planar drawing of H. Let S = S1 ∪ S2. Then

(B.1) |IRGV (ψ,ϕ) \ S| ≤ 12pcrϕ(H) ≤ 12crϕ(H).

Proof. Note first that we may assume that no two
adjacent edges cross each other in the drawing ϕ.
Indeed, if the images of two edges incident to a vertex u
cross, we can uncross their drawings, possibly changing
the cyclic order of edges adjacent to u, and preserving
the cyclic order for all other vertices. The right-
hand side of (1) will then decrease by 12, and the left
hand side by at most 1, so we only strengthen the
inequality. We can also assume w.l.o.g. that the graph
H is 2-connected: otherwise, if C is the set of all 2-
connected components of H, then, since pcrϕ(H) ≥∑
C∈C pcrϕ(C), it is enough to prove the inequality (1)

for each component C ∈ C separately. So we assume
below that H is 2-connected.

Consider some vertex u ∈ IRGV (ψ,ϕ) \ S. Let F be
the face of H \ {u} that contains the image of u in
the drawing ψH\{u}. Note that graph H \ {u} is 2-
connected: otherwise, if v is a vertex separator ofH\{u}
then {u, v} is a 2-separator for H, contradicting the



fact that u /∈ S. Therefore, the boundary of F is a
simple cycle, that we denote by γ. Let v1, . . . , vκ be
the neighbors of u in the order induced by γ. Vertices
vi partition γ into κ paths P1, . . . , Pκ, where path Pi
connects vertices vi and vi+1 (we identify indices κ+ 1
and 1). Let Fi be the face of the planar drawing ψ,
that is bounded by (u, vi), Pi and (vi+1, u). Note that
since for all i 6= j, the two paths Pi and Pj do not share
any internal vertices, the total number of vertices that
the boundaries of Fi and Fj for i 6= j share is at most
3, with the only possibilities being u, vi and vi+1 (the
endpoints of Pi).

Consider the graph W formed by γ, u, and edges (u, vi),
for 1 ≤ i ≤ κ. This graph is homeomorphic to the wheel
graph on κ vertices. In any planar embedding of W , the
ordering of the vertices {vi}κi=1 is (v1, . . . , vκ). So if the
drawing ϕW of W is planar, then the circular ordering
of the edges adjacent to u in ϕ is ((u, v1), . . . , (u, vκ))
– the same as in ψ, up to orientation. Therefore, if
u ∈ IRGV (ψ,ϕ) then either there is a pair Pi, Pj of
paths, with i 6= j, whose images cross in ϕ, or an image
of an edge (u, vi) crosses a path Pj (recall that we have
assumed that no two edges (u, vi) and (u, vj) cross each
other; all self-intersections of paths Pi can be removed
without changing the rest of the embedding). We say
that this crossing point pays for u. Thus every irregular
vertex is paid for by a crossing in the drawing ϕ. It only
remains to show that every pair of crossing edges pays
for at most 12 vertices.

Suppose that u is paid for by a crossing of edges e1 and
e2. For each edge e ∈ {e1, e2}, there is a face F e (in the
embedding of ψ) such that e and u lie on the boundary
of F e: if e lies on path Pi then F e = Fi; if e = (u, vj)
then F e is either Fj−1 or Fj . Since in the latter case
we have two choices for F e, we can choose distinct faces
F e1 and F e2 . Therefore, if a crossing of edges e1 and e2
pays for a vertex u ∈ IRGV (ψ,ϕ)\S, then there are two
distinct faces F e1 and F e2 in ψ, incident to e1 and e2
respectively, such that u lies on the intersection of the
boundaries of F e1 and F e2 . We say that the pair of faces
F e1 and F e2 is the witness for the irregular vertex u.
Since the boundaries of F e1 and F e2 may share at most
3 vertices that do not belong to S2, the pair (F e1 , F e2)
is a witness for at most 3 irregular vertices. Since each
edge ei is incident to at most two faces in ψ, there are at
most 4 ways to choose F e1 and F e2 , and for each such
choice (F e1 , F e2) is a witness for at most 3 irregular
vertices. We conclude that each pair of edges that cross
in ϕ pays for at most 12 irregular vertices.

Lemma B.5. Let ϕ be an arbitrary drawing of H and

ψ be its planar drawing. Let ES = E1 ∪ E2. Then

|IRGE(ψ,ϕ) \ ES | ≤ 8pcrϕ(H) ≤ 8crϕ(H).

Proof. We can assume w.l.o.g. that there are no vertices
of degree 2 in H, by iteratively removing such vertices
u, and replacing the two edges incident on u with a
single edge. This operation may decrease the number
of irregular edges by at most factor 2, and can only
decrease the number of pairs of crossing edges. Similarly
to the proof of Lemma 4, we assume that the graph H
is 2-connected: otherwise, we can apply the argument
below separately to each 2-connected component.

We say that the orientation of a regular vertex u is
positive, if the ordering of the edges incident to u is the
same in ϕ and ψ, including the flip. If the flips in ϕ and
ψ are opposite, we say that the orientation is negative.
For every irregular edge e, the orientation of one of its
endpoints is positive, and of the other is negative.

Consider an irregular edge e = (u, v) ∈ IRGE(ψ,ϕ)\ES ,
and assume w.l.o.g. that the orientation of u is positive
and the orientation of v is negative. Let F1 and F2 be
the two faces incident to e in the embedding ψ. Since H
is 2-connected, the boundaries of F1 and F2 are simple
cycles. Denote them by C1 and C2. Let Pi = Ci \ {e}
be the sub-path of Ci that connects u to v. We now
prove that P1 and P2 do not share any vertices except
for u and v. Indeed, assume for contradiction that a
vertex w /∈ {u, v} lies on both P1 and P2. Since e /∈ ES ,
either u or v (or both) are not in S. Assume w.l.o.g.
that u /∈ S. We draw two curves, connecting w to the
middle of the edge e inside the planar drawing ψ of H;
one of the two curves lies inside F1 and the other lies
inside F2. The union of the two curves defines a cycle
that separates H \{w} into two pieces, with u belonging
to one piece and v to the other. Denote these pieces by
Bu and Bv, respectively. (We assume that w ∈ Bu,
w ∈ Bv). We will now show that (u,w) is a 2-separator
for H, leading to a contradiction. Observe first that
since the degrees of u and v are at least 3, and the
separating cycle only crosses one edge of H (the edge e),
both Bu and Bv contain at least 3 vertices each. Since
every path from Bu to Bv must cross the separating
cycle, each such path either contains the vertex w or
the edge e. Therefore, (u,w) is a 2-separator for H,
contradicting our assumption that u /∈ S.

We say that the pair of faces (F1, F2) is the witness for
the irregular edge e. From the above discussion, each
pair of faces is a witness for at most one irregular edge.

Let oµu be the orientation — either clockwise or counter-
clockwise — in which paths paths P1, e, and P2 leave
u in the embedding µ (where µ is either ϕ or ψ). If
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Figure 6: Graph H, irregular edge e, paths P1 and P2.

the orientation is clockwise oµu = 1; otherwise oµu = −1.
Similarly, we define oµv . Note that in any embedding µ′

in which paths P1, e and P2 do not cross each other,
oµ
′
u = −oµ′v . In particular, since ψ is a planar embed-

ding, oψu = −oψv . But since the orientation of u is pos-
itive, and the orientation of v is negative, oϕu = oϕv .
Therefore, there is a pair (e1, e2) of crossing edges in ϕ,
where either e1 ∈ P1, e2 ∈ P2; or e1 ∈ P1, e2 = e; or
e1 = e and e2 ∈ P2. We say that the crossing of e1 and
e2 pays for the irregular edge e. The edges e1 and e2
lie on the boundaries of F1 and F2 respectively. Sim-
ilarly to the previous lemma, given two crossing edges
e1 and e2, there are at most 4 ways to choose the faces
(F1, F2) incident to them, and each such pair of faces is
a witness for at most one edge. Therefore, each pair of
crossing edges pays for at most 4 irregular edges. We
conclude that the number of irregular edges is bounded
by 4crϕ(H). Replacing the edges back by the original 2-
paths increases the number of irregular edges by at most
factor 2, as each irregular 2-path contains two irregular
edges.

B.3 Proof of Lemma 3 We start with a high level
overview of the proof. Assume first that the graph H
is 2-connected. We can then use Theorem 12 to find a
laminar block decomposition F of H. Moreover, each
vertex v ∈ S2 is either an endpoint of a block in F ,
or it is a neighbor of an endpoint of a block in F .
Therefore, |S2| is roughly bounded by O(|F| · dmax).
On the other hand, since the graph G is 3-connected,
each block B ∈ F must contain an endpoint of an edge
from E∗ as an inner vertex, that can be charged for
the block B, for its endpoints, and for the neighbors of
its endpoints. This approach would work if we could
show that every edge e ∈ E∗ is only charged for a small
number of blocks. This unfortunately is not necessarily
true, and an edge e ∈ E∗ may be charged for many
blocks in F . However, this may only happen if there is
a large number of nested blocks, all of which contain

the same endpoint of the edge e. We call such set
of blocks a “tunnel”. We then proceed in two steps.
First, we bound the number of blocks of F that do not
participate in such tunnels, by charging them to the
edges of E∗, as above. Next, we perform some local
changes in the embeddings of the tunnels (by suitably
flipping the embedding of each block of the tunnel), so
that we can charge the number of irregular vertices that
serve as endpoints of blocks participating in the tunnels
to the crossings in ϕ.

We now proceed with the formal proof. We start with
an arbitrary planar drawing ψinit of H. Let C be the set
of all 2-connected components of H. We consider each
component X ∈ C separately. For a component X ∈ C,
let crϕ(G, X) denote the number of crossings in ϕ in
which edges of X participate, and let E∗(X) denote the
subset of edges of E∗ that have at least one endpoint
in X. We will modify ψinit locally on each 2-connected
component X ∈ C and obtain a planar drawing ψ of H
such that

|IRGV (ϕH,ψ) ∩ S2(X)| = O(crϕ(G, X) + |E∗(X)|
+ |S1 ∩X|)

|IRGE(ϕH,ψ) ∩ E2(X)| = O(dmax(crϕ(G, X) + |E∗(X)|
+ |S1 ∩X|)).

Summing up over all X ∈ C, and using Lemma 1
gives the desired bound. Since we guarantee that the
modifications of ψinit are restricted toX, we can modify
the 2-connected components X ∈ C independently to
obtain the final desired drawing.

Fix a 2-connected component X ∈ C. If X is 3-
connected then S2(X) = E2(X) = ∅ and there is noth-
ing to prove. So we assume below that X is not 3-
connected. We compute the laminar block decompo-
sition F(X) and the corresponding decomposition tree
T (X) for X, given by Theorem 12. For convenience,
we use F ′(X) = F(X) \ {X} to denote the set of all
blocks in F(X), excluding the whole component X. We
now proceed in three steps. Our first step is to explore
some structural properties of the blocks B ∈ F(X). We
will use these properties, on the one hand, to bound the
number of blocks that do not participate in tunnels, and
on the other hand, to find the layout of the tunnels. In
the second step, we define the subsets of blocks that we
can charge to the edges in E∗. We then charge some of
the vertices in S2 and edges in E2 to these blocks. In
the last step, we define tunnels, to which all remaining
blocks belong, and we show how to take care of them.

Step 1: Structural properties of blocks Consider
some block B ∈ F ′(X), with endpoints u and v. Since



X is 2-connected, there is a path PBout : u  v in
(X \ B) ∪ {u, v}. Moreover, if B′ is the parent of B in
T (X), whose endpoints are u′ and v′, we can ensure that
PB

′
out ⊆ PBout, as follows. Consider the graph B∗ obtained

from B′ after we remove all inner vertices of B from it.
Since X is 2-connected, so is B′. Therefore, there are
2 vertex disjoint paths in B∗, connecting the vertices
in {u′, v′} to the vertices in {u, v}. We assume w.l.o.g.
that these paths are P1 : u  u′ and P2 : v  v′.
We can then set PBout = (P1, P

B′
out, P2) (see Figure 7).

Therefore, from now on we assume that if B′ is the
parent of B, then PB

′
out ⊆ PBout.

u vu′ v′

PB′
out

B

B′

P1 P2

Figure 7: Paths PBout, P
B′
out.

Since we have assumed that G is 3-vertex connected,
for every block B ∈ F ′(X), there is also a path Q in
G \ {u, v}, connecting an inner vertex of the block B,
with an inner vertex of the path PBout. Let xB be the
last vertex on Q that belongs to B and yB be the first
vertex on Q that belongs to PBout (notice that yB 6= u, v,
since Q does not contain u or v). We denote the segment
of Q between xB and yB by PB0 , and we call the vertex
xB the connector vertex for the block B.

Note that if B′′ is a child block of B and xB is an inner
vertex of B′′ as well, then since PBout ⊆ PB

′′
out , we can

choose xB to be the connector vertex of B′′ as well,
and use PB

′′
0 = PB0 . So we assume that each connector

vertex x appears contiguously in the tree T . That is,
if B is a descendant of B1 and an ancestor of B2 and
xB1 = xB2 , then xB = xB1 = xB2 . We also assume that
in this case PB1

0 = PB0 = PB2
0 . We denote the segment

of PBout between u and yB by PB1,out and the segment
between yB and v by PB2,out.

Since X is 2-connected, there are two vertex disjoint
paths between xB and yB in X. One of them must
pass through u and the other through v. We denote the
segment between u and xB of the former path by PB1,in
and the segment between xB and v of the latter path
by PB2,in. Let PBin be the concatenation of PB1,in, PB2,in.
Note that the paths PB0 , PB1,in, PB2,in, PB1,out and PB2,out
do not intersect, except at endpoints (see Figure 8). We
emphasize that xB is an inner vertex of B, and yB is an
inner vertex on path PBout — a fact that we use later.

u v
B

xB

yBPB
1,out PB

2,out

PB
2,inPB

1,in

PB
0

Figure 8: Paths PB0 , PB1,in, PB2,in, PB1,out and PB2,out.
Vertex xB is an inner vertex of B, and vertex yB is
an inner vertex of PBout. All five paths are non-empty
and completely disjoint except for their endpoints.

B2 u1 v1 = v2  

 

B1 

u2 

Figure 9: A simple block B1.

For each component X ∈ C, let SX be the union of (i)
the set S1 ∩X and (ii) the set of vertices of X incident
to edges of E∗. Using Lemma 1,

(B.2)
∑
X∈C
|SX | ≤

∑
X∈C

(|E∗(X)|+ |S1 ∩X|) ≤ O(|E∗|).

We now show that for each block B ∈ F ′(X), the
connector vertex xB ∈ SX . Indeed, consider the first
edge (xB , z) of the path PB0 . If z ∈ X, then (xB , z) ∈
E∗(X), as by the definition of the block, no edges of
X connect inner vertices of B to X \ B. Otherwise, if
z /∈ X, then xB must be a 1-separator, so xB ∈ S1.

Finally, we study structural properties of chains of
nested blocks. We also introduce a notion of a simple
block, and show that all non-simple blocks contain a
certain useful structure.

Definition B.1. Let B1 ∈ F ′(X) be any block, whose
endpoints are denoted by u1 and v1. We say that B1 is a
simple block iff it contains exactly three vertices, u1, v1,
and u2, and has exactly one child in T (X), denoted
by B2 (assume w.l.o.g. that the endpoints of B2 are
(u2, v1)). Moreover, B1 is obtained by adding exactly
one edge, (u1, u2), to B2 (see Figure 9). If B1 ∈ F ′(X)
has exactly one child in T (X), but it is not a simple
block, then we say that it is complex.

We need the following two claims.
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Figure 10: A complex block. Paths Q1, Q2, Q3 are
pairwise vertex disjoint, except for containing x′ as a
common endpoint.

Claim B.1. Consider a chain of 5 nested blocks: B1,
B2, B3, B4 and B5, where Bi+1 is the only child of
Bi (for i ∈ {1, . . . , 4}). Assume that no vertices in
V (B1) \ V (B5) have degree 2 in X. Then one of the
blocks B1,B2,B3, or B4 is complex.

Proof. Notice that from the definition of simple blocks,
if all blocks B1, B2, B3, B4 are simple, at least one vertex
z ∈ {u2, v2, u3, v3} \ V (B5) must have degree 2 in X
(where ui and vi are endpoints of Bi), contradicting the
fact that V (B1) \ V (B5) cannot contain such vertices.

Claim B.2. Suppose that a non-simple block B1 ∈
F ′(X) has exactly one child B2 in T (X). Denote the
endpoints of B1 by u1 and v1, and the endpoints of B2 by
u2 and v2. Then for every vertex x′ ∈ V (B̃1) \ {u1, v1},
there are three paths Q1 : x′  u1, Q2 : x′  v1, and
Q3 : x′  w, with w ∈ {u2, v2}, and all three paths
are contained in B̃1 \ {(u2, v2)}. Moreover, Q1, Q2 and
Q3 do not share any vertices, except for the vertex x′

that serves as their endpoint. (See Figure 10 for an
illustration.)

Proof. Since B1 has only one child, u2 /∈ {u1, v1} or
v2 /∈ {u1, v1} (or both). Let us assume w.l.o.g. that
u2 /∈ {u1, v1}. In particular, B1 contains at least 3
vertices.

We consider two cases. Assume first that B̃1 contains
exactly 3 vertices. Then these vertices must be u1, v1
and u2. The only valid choice for the vertex x′ is
x′ = u2. From the definition of blocks, B1 cannot
contain the edge (u1, v1). But since it is connected,
it must contain the edge (u1, u2). Therefore, the only
way for Bi not to be simple (since we have assumed that
G contains no parallel edges) is if B1 contains the edge
(u2, v1). But in this case, we get the following three
paths: Q1 = (u1, u2), Q2 = (u2, v1), and Q3 = ∅.

Assume now that B̃1 contains at least 4 vertices. From
Theorem 12, the graph B̃′1 is 3-connected. Let x′ be

an arbitrary inner vertex of B1. Assume first that
x′ /∈ {u2, v2}. Recall that the Fan Lemma states that for
every r-connected graph A, a vertex a in A and a set of r
vertices B ⊂ V (A)\{a}, there exist r paths that connect
a to vertices of B that have no common vertices other
than a. We apply the Fan Lemma in graph B̃′1 to x′

and {u1, v1, u2}. Let Q1 be the resulting path between
x′ and u1, Q2 the path between x′ and v1, and Q′3 the
path between x′ and u2. Note that paths Q1 and Q2

do not contain the artificial edge (u2, v2), as otherwise
they would contain u2. Notice also that none of the
three paths contains the artificial edge (u1, v1), as this
would violate their disjointness. Finally, let Q3 be equal
to either Q′3, if Q′3 does not visit v2, or the segment of Q′3
between x′ and v2, if it does (the latter can only happen
if v2 6∈ {u1, v1}). We have thus constructed the required
paths Q1, Q2 and Q3. Assume now that x′ ∈ {u2, v2}.
Since B̃′1 is 3-vertex connected (and B̃′1 6= K3), the
graph B̃′1 \ {(u2, v2)} is 2-vertex connected. We again
apply the Fan Lemma to w and {u1, v1} in this graph
and find the desired paths Q1 and Q2. We let Q3 to be
the trivial path of length 0.

Step 2: Blocks we can pay for Fix a 2-connected
component X ∈ C. In this step, we define three subsets
R1(X),R2(X),R3(X) of F(X), and bound the number
of blocks contained in them. We also define a subset
S̃2 ⊆ S2 of vertices and a subset Ẽ2 ⊆ E2 of edges, that
can be charged to these blocks. The remaining blocks of
F(X) will be partitioned into structures called tunnels,
and we take care of them in the next step.

Set R1(X): Let R1(X) denote the set of blocks B ∈
F(X), such that B is either the root of T (X), or it is one
of its leaves, or it has a degree greater than 2 in T (X),
or it contains a vertex from SX that does not belong
to any of its child blocks. We also add five immediate
ancestors of every such block to R1(X).

Claim B.3.
∑
X∈C |R1(X)| = O(|E∗|).

Proof. Denote the number of leaves in T (X) by LX .
For each leaf block B, we charge the connector vertex
xB ∈ SX for B. For each non-leaf block B, such that
B contains a vertex x ∈ SX that does not belong to
any of its children, we charge x for B (even if xB 6= x).
Since F(X) is a laminar family, it is easy to see that
each vertex x ∈ SX is charged at most once. The
number of vertices of degree at least 3 in T (X) is at
most LX − 1. By adding five ancestors of each block,
we increase the size of R1(X) by at most a factor of 5.
Therefore,

∑
X∈C |R1(X)| ≤

∑
X∈C O(|SX |) = O(|E∗|).



Set R2(X): Consider a vertex x ∈ SX . Notice that
the set of blocks B ∈ F(X) with xB = x must be a
nested set. We add the smallest such block and its five
immediate ancestors to R2(X).

Claim B.4.
∑
X∈C |R2(X)| = O(|E∗|).

Proof. For each block B ∈ R2(X), we charge the
connector vertex xB for B. By the definition of
R2(X), each connector vertex pays for at most 6 blocks.
Therefore,

∑
X |R2(X)| ≤

∑
X O(|CX |) = O(|E∗|).

Set R3(X): Note that the blocks of F(X) that do not
belong to R1(X) ∪ R2(X) all have degree exactly 2 in
T (X), and therefore the sub-graph of T (X) induced
by such blocks is simply a collection of disjoint paths.
Consider some block B ∈ F(X) \ (R1(X) ∪R2(X)). It
has exactly one child in T (X), that we denote by B′.
Let u and v be the endpoints of B, and let u′ and v′ be
the endpoints of B′. Consider the graph B̃′ obtained
from B by first replacing B′ with an artificial edge
(u′, v′) and then by adding a new artificial edge (u, v).
By Theorem 12, the graph B̃′ is 3-vertex connected.
Therefore, it has a unique planar drawing πB̃′ . We add
B to R3(X) iff the four vertices u, v, u′, v′ do not lie
on the boundary of the same face in this drawing.

Lemma B.6.
∑
X∈C (|R3(X)|) = O(crϕ(G)).

Proof. Consider some block B ∈ R3(X). Denote B0 =
B, and for i = 1, . . . , 5, let Bi be the child of Bi−1

in T (X). For each i : 1 ≤ i ≤ 5, let (ui, vi) denote
the endpoints of the block Bi. Since when we added
a block to R1(X) or R2(X), we also added five its
immediate ancestors to R1(X) or R2(X), respectively,
each of the blocks Bi, for 0 ≤ i ≤ 5, has a unique
child, and moreover, for i = 1, . . . , 5, xBi

= xB and
PBi

0 = PB0 . Let ÊB denote the edges of B that do
not belong to B5, that is, ÊB = E(B) \ E(B5). We
will show that for each B ∈ R3, there is at least one
crossing in ϕ, in which the edges of ÊB participate.
Since every edge may belong to at most 5 such sets
ÊB , it will follow that |R3(X)| ≤ O(crϕ(X,G)), and∑
X∈C (|R3(X)|) = O(crϕ(G)). Therefore, it now only

remains to show that for each block B ∈ R3(X), the
edges of ÊB participate in at least one crossing in ϕ.
Assume for contradiction that this is not true, and let B
be the violating block. We will show that we can find a
planar drawing of B̃′, in which the vertices (u, v, u1, v1)
all lie on the boundary of the same face, contradicting
the fact that B ∈ R3(X).

We denote by B∗ the graph obtained from B after we
remove all inner vertices of B1 and their adjacent edges
from it. Notice that all edges of B∗ belong to ÊB . We
also denote xB = x, yB = y and PB0 = P0. Recall that
for all 1 ≤ i ≤ 5, xi = x, yi = y and PBi

0 = P0. Recall
that by definition, x is an inner vertex on PBi

in for all
1 ≤ i ≤ 5, and y is an inner vertex on PBout.

We start with a high-level intuition for the proof. Let
Pin = PB1

in ⊆ B1, and assume for now that Pin only
contains the edges of ÊB (this is not necessarily true
in general). Observe that Pin contains no edges of
B \ B1. Therefore, the sets E(B∗), E(Pin), E(P0) and
E(PBout) of edges are completely disjoint. Consider the
drawing ϕ of G, and erase from it all edges and vertices,
except those participating in B∗, Pin, P0 and PBout. Let
ϕ′ be the resulting drawing. For convenience, we call
the edges of ÊB blue edges, and the remaining edges
red edges. By our assumption, the blue edges do not
participate in any crossings. Since we have assumed
that Pin only consists of blue edges, all crossings in ϕ′

are between the edges of P0, PB1,out and PB2,out. All
these three paths share a common endpoint, y, and
they are completely disjoint otherwise. Therefore, we
can uncross their drawings in ϕ′, and obtain a planar
drawing ϕ′′ of B∗ ∪ Pin ∪ PBout ∪ P0. Erase the drawing
of P0 from ϕ′′, and replace the drawings of paths PBout
and Pin by drawings of edges e : u  v, e′ : u1  v1,
respectively, to obtain a planar drawing π′ of B̃′. Note
that in π′, the drawings of edges (u, v) and (u1, v1) (and
therefore their endpoints) lie on the boundary of one
face, since the drawing of the path P0 in ϕ′′ connects
internal points of edges (u1, v1) and (u, v) and does not
cross the images of any edges. Therefore, we have found
a planar drawing of B̃′, in which the vertices u, v, u′, v′

lie on the boundary of the same face, contradicting the
fact that B ∈ R3(X). The only problem with this
approach is that Pin does not necessarily only consist
of edges of ÊB \E(B∗). We overcome this by finding a
new path P ′in : v  u that only contains edges of ÊB
but no edges of B∗, and another path P ′0 connecting an
inner vertex x′ of P ′in to the vertex y. If we ensure that
(1) P ′in : v  u only contains edges of ÊB but no edges
of B∗; (2) path P ′0 : x′  y connects an inner vertex x′

of P ′in to y and contains no edges of B∗; and (3) The
paths P ′in, P

′
0 and PBout are completely disjoint, except

for possibly sharing endpoints, then we can again apply
the above argument, while replacing the path P ′in with
Pin, and path P0 with P ′0. We now provide the formal
proof.

We first note that at least one of the four blocks
B1, B2, B3, B4 is complex. Indeed, by Claim 1 it suffices
to show that V (B1)\V (B5) does not contain a vertex w



whose degree is 2 in X. Note that if w ∈ V (B1)\V (B5)
and the degree of w in X is 2, then w ∈ SX . This is
since G is 3-connected, and so all degree-2 vertices in X
must either be incident on an edge of E∗, or belong to
S1. Therefore, one of the blocks B1, . . . , B4 must have
been added to R1(X), together with its five immediate
ancestors.

We finally show that since one of the blocks Bi, for
1 ≤ i ≤ 4, is complex, we can find the planar drawing of
B̃′ in which u, v, u1, v1 lie on the same face, thus leading
to contradiction.

Claim B.5. If at least one of the blocks Bi, for 1 ≤
i ≤ 4 is complex, then there is a planar drawing of B̃′,
in which u, v, u1, v1 all lie on the boundary of the same
face.

Proof. Let Bi be the first complex block among B1, B2,
B3 and B4. Notice that since Bi has only one child in
T (X), it must contain at least one inner vertex. Choose
an arbitrary inner vertex x′ of B̃i. Since Bi is complex,
there are three paths Q1 : x′  ui, Q2 : x′  vi, and
Q3 : x′  w, as in Claim 2. We assume w.l.o.g, that
w = ui+1. We extend paths Q1 and Q2 to paths Q′1 and
Q′2, connecting x′ to vertices u1 and v1, as follows. Since
X is 2-connected, there are two vertex disjoint paths
connecting {ui, vi} to {u1, v1} in B1. We assume w.l.o.g.
that these paths are ∆1 : ui  u1 and ∆2 : vi  v1. We
append these paths to Q1 and Q2, obtaining the desired
paths Q′1 : x′  u1 and Q′2 : x′  v1. Finally, we define
paths P ′in and P ′0, as follows. Let P ′in : u1  v1 be the
union of paths Q′1 : x′  u1 and Q′2 : x′  v1. Let
P ′0 : x′  yB be the union of paths Q3 : x′ → ui+1,
PBi

1,in : ui+1  x and PB0 : x  y (see Figure 11).
Observe that x′ is indeed an inner vertex of P ′in, so P ′0
connects an inner vertex of P ′in to an inner vertex of
PBout, as required.

We now verify that paths P ′in and P ′0 satisfy other
required conditions. First, P ′in only contains edges of
ÊB but no edges of B∗, since all paths Q1, Q′1, Q2, Q′2
lie in B1 but do not contain edges of Bi+1 ⊇ B5. Next,
path P ′0 : x′  yB does not contain edges of B∗, since
it is the concatenation of the path Q3 ⊆ Bi ⊆ B1, the
path PBi

1,in ⊆ Bi ⊆ B1 and the path P0, that does not
contain edges of B. It is straightforward to verify that
paths P ′in, P ′0, and PBout share no vertices except for y
and x′. Therefore, the sets E(B∗), E(P ′0), E(P ′in) and
E(PBout) of edges are completely disjoint, as required.

We now consider the drawing ϕ′ obtained from ϕ,
after we remove all edges and vertices, except those
participating in B∗, PBout, P

′
in and P ′0. We call the edges
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Figure 11: Paths Q1, Q2 (and their extensions Q′1 and
Q′2), and Q3. Recall that path P ′in = (Q′1, Q

′
2), and path

P ′0 = (Q3, P
Bi
1,in, P0).

of ÊB blue, and the remaining edges red. Then P ′in only
consists of blue edges, but it does not contain edges of
B∗. Since in the resulting drawing, ϕ′, no blue edges
participate in crossings, the only crossings involve paths
PB1,out, P

B
2,out and P ′0. As before, we can uncross them

and obtain a planar drawing ϕ′′, which gives a planar
drawing π′ of B̃′, in which the vertices u, v, u1, v1 all lie
on the same face.

Let R(X) = R1(X)∪R2(X)∪R2(X), and let R′(X) be
the set of all blocks B ∈ F(X), whose parent belongs to
R(X). Since all leaves of tree T (X) belong to R1(X),
it is easy to see that |R′(X)| ≤ |R1(X)|. Therefore, we
get the following corollary:

Corollary B.1.∑
X∈C

(|R(X)|+ |R′(X)|) ≤ O(crϕ(G) + |E∗|).

By Theorem 12, every vertex in S2(X) is an endpoint
of a block in F(X), or it has degree 2 in X. Let
S̃2(X) ⊆ S2(X) denote the set of vertices of S2(X)
that either have degree 2 in X, or serve as endpoints of
blocks inR(X)∪R′(X), and let S′2(X) = S2(X)\S̃2(X).
Additionally, let S̃2 =

⋃
X∈C S̃2(X), and S′2 = S2 \ S̃2.

Since, as we already observed, vertices that have degree
2 in X belong to SX , we have that:

|S̃2| ≤
∑
X∈C

(2|R(X)|+ 2|R′(X)|+ |SX |)

≤ O(crϕ(G) + |E∗|).

We let Ẽ2(X) ⊆ E2(X) denote the edges of E2(X) that
have at least one endpoint in S̃2(X), and E′2(X) =



E2(X) \ Ẽ2(X). Additionally, let Ẽ2 =
⋃
X∈C Ẽ2(X),

and E′2 = E2 \ Ẽ′2. Clearly,

|Ẽ2| ≤ dmax|S̃2| ≤ O(dmax)(crϕ(G) + |E∗|).

It now only remains to bound the number of irregular
vertices in set S′2, and the number of irregular edges in
set E′2. From our definitions, for each X ∈ C, for each
v ∈ S′2(X), there is a block B ∈ F(X)\(R(X)∪R′(X)),
such that v is an endpoint of B. Moreover, for each
e ∈ E′2(X), both endpoints of e belong to S′2(X).

Step 3: Taking care of tunnels We now consider
blocks of F(X) \ R(X). The degree of each such
block in T (X) is 2. A tunnel Z is a maximal path in
T (X) containing blocks in F(X) \ R(X). Let Z(X)
denote the set of all such tunnels in T (X), and let
Z =

⋃
X∈C Z(X). Notice that each pair of tunnels is

completely disjoint in the tree T (X) (but their blocks
may share vertices: if the first block of one of the tunnels
is a descendant of the last block of another in T (X),
then the blocks are nested; also, the first blocks of two
tunnels can share endpoints).

The parent of the first block (closest to the root of
T (X)) in a tunnel belongs to R(X). Therefore, by
Corollary 3, the total number of tunnels is at most

(B.3) |Z| ≤
∑
X∈C
|R′(X)| = O(crϕ(G) + |E∗|).

Consider some tunnel Z = B1 ⊃ · · · ⊃ Bκ. Denote the
endpoints of the block Bi by (ui, vi), for 1 ≤ i ≤ κ. Let
B′ ⊆ Bκ be the unique child of block Bκ in T (X), and
denote its endpoints by (u′, v′). Since a tunnel consists
of consecutive blocks in T (X), none of which are in
R2(X), all blocks in the tunnel have the same connector
vertex. Denote x = xB1 , y = yB1 , P0 = PB1

0 , and recall
that for all 1 ≤ i ≤ κ, xBi = x, yBi = y, and PBi

0 = P0.
Let Pin = PB

′
in and Pout = PB1

out. Note that x is an inner
vertex of Pin, and y is an inner vertex of Pout. All three
paths P0 : x  y, Pin : u′  v′ and Pout : u  v share
no vertices except for x and y.

We define two auxiliary graphs corresponding to the
tunnel Z. First, we remove all inner vertices of B′ from
B1, to obtain the graph HZ . We then add paths P0,
Pout, Pin to HZ , contracting all degree-2 vertices in
the subgraph P0 ∪ Pout ∪ Pin, to obtain the graph JZ .
Therefore, the paths P0, Pout and Pin are represented
by 5 edges in JZ (see Figure 13). We call these edges
artificial edges.

Observe that ψinit induces a planar drawing ψZ
of the graph HZ ∪ Pin ∪ Pout. However, in this

drawing, we are not guaranteed that the vertices
(v1, v2, . . . , vκ, v′, u′, uκ, . . . , u1) all lie on the boundary
of the same face. Our next goal is to change the drawing
ψZ to ensure that all these vertices lie on the boundary
of the same face. We can then extend this drawing
to obtain a planar drawing of JZ . Combining the final
drawings ψZ for all tunnels Z will give the final drawing
ψ of the whole graph.

We start with the drawing ψZ of HZ ∪ Pin ∪ Pout,
induced by ψinit. We then perform κ iterations. In
iteration i : 1 ≤ i ≤ κ, we ensure that all vertices in
(v1, v2, . . . , vi+1, ui+1, . . . , u1) lie on the boundary of the
same face. We refer to this face as the outer face. For
convenience, we denote v′ and u′ by vκ+1 and uκ+1,
respectively.

Consider some iteration i : 1 ≤ i ≤ κ, and assume that
we are given a current drawing ψZ of HZ ∪ Pin ∪ Pout,
in which the vertices in (v1, v2, . . . , vi, ui, . . . , u1) lie on
the boundary γ of the outer face Fout of the drawing.
Let ψi be the drawing, induced by ψZ , of the graph
Bi ∪ γ. Let ψ′i be the drawing obtained from ψi after
we replace Bi+1 with a single edge. Notice that (ui, vi)
both lie on γ, so we can view γ as the drawing of the
path PBi

out. Recall that in the unique planar drawing
πB̃′i

of B̃′i, the four vertices ui, vi, ui+1, vi+1 all lie on
the boundary of the same face. In particular, there is a
cycle Ci ⊆ Bi, such that ui, vi, ui+1, vi+1 ∈ Ci, and if γi
denotes the drawing of Ci given by πB̃′i

, then all edges
and vertices of Bi\Ci are drawn inside γi. Let C ′i, C

′′
i be

the two segments connecting ui to vi in Ci. Notice that
both ui+1 and vi+1 must belong to the same segment,
since otherwise, the ordering of the four vertices along
Ci is either (vi, vi+1, ui, ui+1), or (ui, vi+1, vi, ui+1), and
the images of the artificial edges (ui, vi) and (ui+1, vi+1)
would cross in πB̃′i . Assume w.l.o.g. that ui+1, vi+1 ∈ C ′i
We have three possibilities. The first possibility is that
the vertices ui+1, vi+1 belong to γ – in this case we
do nothing. The second possibility is that the segment
C ′′i ⊆ γ. In this case we can “flip” the drawing of Bi,
so that now C ′i lies on the boundary of the outer face
of the drawing of HZ , thus ensuring that all vertices
(v1, v2, . . . , vi+1, ui+1, . . . , u1) lie on the boundary of the
outer face. The third possibility is that there is an edge
e = (ui, vi) that belongs to γ. In this case, we “flip” the
image of the edge e (possibly together with the image
of Bi), so that C ′i becomes the part of the boundary of
the outer face (see Figure 12).

Let ψZ be this new embedding of the graph HZ . Since
different tunnels are completely disjoint (except that it
is possible that the last block of one tunnel contains the
first block of another), we can perform this operation
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Figure 12: Iteration i.

Figure 13: Graph JZ . Bold lines are the artificial edges,
representing the paths P0, Pin and Pout. The second
figure shows the outcome of the flipping procedure,
where all vertices u1, u2, . . . , uκ, vκ, . . . , v1 lie on the
boundary of one face.

independently for each tunnel Z ∈ Z(X), for all X ∈ C
and the resulting planar embedding ψ is our final planar
embedding of H. Notice that for every tunnel Z, we can
naturally extend ψZ to a planar embedding ψ(JZ) of
JZ , by adding a planar drawing of the 5 artificial edges
of JZ inside the face on whose boundary the vertices
u1, u2, . . . , uκ, vκ, . . . , v1 lie.

It now only remains to bound the number of irregular
vertices in IRGV (ϕ,ψ)∩S′2, and the number of irregular
edges in IRGE(ϕ,ψ) ∩ E′2.

For every tunnel Z ∈ Z, let Ŝ2(Z) = {u ∈ V (JZ) : ∃v ∈
V (JZ) s.t. (u, v) is a 2-separator for JZ}. We need the
following lemma, whose proof appears in the full version
of the paper.

Lemma B.7. For every tunnel Z ∈ Z, |Ŝ2(Z)| ≤ 8.

We now show how to complete the proof of Lemma 3,
using Lemma 7.

Recall that ϕ is the optimal embedding of G. For each
tunnel Z ∈ Z, we define the following drawing ϕ(JZ):
first, erase from ϕ all edges and vertices, except those
participating in Z, P0, Pin and Pout (that have been
defined for Z). Next, route the five artificial edges of JZ
along the images of the paths P0, Pin and Pout. Finally,

if any pair of artificial edges crosses more than once
in the resulting embedding, perform uncrossing, that
eliminates such multiple crossings, without increasing
the number of other crossings in the drawing. Let
crϕ(JZ) denote the number of crossings in the resulting
drawing. Since the five artificial edges may have at most
25 crossings with each other, we have that:

crϕ(JZ) ≤ crϕ(HZ ,G) + 25

and∑
Z∈Z

crϕ(JZ) ≤ O(crϕ(G))+O(|Z|) ≤ O(OPTcr(G)+|E∗|).

Fix some tunnel Z ∈ Z. Since the drawing ψ(JZ)
is planar, we can apply Lemma 2 to the drawings
ψ(JZ),ϕ(JZ) of JZ , and get that:

|IRGV (ψ(JZ),ϕ(JZ))| ≤ O(crϕ(JZ)(JZ) + |Ŝ2(Z)|)

and

|IRGE(ψ(JZ),ϕ(JZ))| ≤ O(dmax)(crϕ(JZ)(JZ)+|Ŝ2(Z)|).

Summing up over all tunnels Z ∈ Z, we get that:∑
Z∈Z
|IRGV (ψ(JZ),ϕ(JZ))| ≤ O(OPTcr(G) + |E∗|)

+O(Z) = O(OPTcr(G) + |E∗|)

and∑
Z∈Z
|IRGE(ψ(JZ),ϕ(JZ))| ≤ O(dmax)(OPTcr(G)+|E∗|)

Finally, we observe that since the tunnels are disjoint,
if v ∈ S′2, v ∈ V (Z), and v ∈ IRGV (ϕ,ψ), then either
v ∈ IRGV (ψ(JZ),ϕ(JZ)), or v is an endpoint of the first
block of the tunnel Z. Therefore,

|IRGV (ϕ,ψ) ∩ S′2| ≤
∑
Z∈Z

(|IRGV (ψ(JZ),ϕ(JZ))|+ 2)

≤ O(crϕ(JZ)(JZ) + |E∗|).

Each edge in E′2 has both endpoints in S′2, and therefore
must be either completely contained in some tunnel,
or be adjacent to an endpoint of the first block of a
tunnel. So if e ∈ E′2, and e ∈ IRGE(ϕ,ψ), then either
e ∈ IRGE(ψ(JZ),ϕ(JZ)) for some tunnel Z, or it is
adjacent to an endpoint of the first block of some tunnel
Z. Therefore,

|IRGE(ϕ,ψ) ∩ E′2|

≤
∑
Z∈Z

(|IRGV (ψ(JZ),ϕ(JZ))|+ 2dmax)

≤ O(dmax)(crϕ(JZ)(JZ) + |E∗|).


