Probabilistic Embeddings of Bounded Genus Graphs Into Planar Graphs

Anastasios Sidiropoulos (MIT)

Joint work with Piotr Indyk (MIT)

Probabilistic Embeddings

- Given finite metric space M=(X,D)
- Obtain distribution $F = \{M_1, M_2, ..., M_k\}$, $M_i = (X, D_i)$, such that \forall u,v $\in X$,
 - $\forall M_i \in F, D_i(u,v) \ge D(u,v)$
 - $E_N \in_F [D_N(u,v)] \leq \alpha \cdot D(u,v)$

 α : distortion GOAL: small α

Probabilistic Embeddings - Known Results

From	Into	Upper	Lower	Citation
Cycle	Line	O(1)	Ω(1)	[Karp89]
General	Trees	O(logn)	$\Omega(logn)$	[Alon,Karp,Peleg,West'91], [Bartal'96], [Bartal'98], [Fakcharoenphol,Rao,Talwar'03]
General Graphs	Subtrees	O(log²n loglogn)	$\Omega(logn)$	[Elkin,Emek,Spielman,Teng'05]
Series-Parallel	Subtrees	O(logn)	$\Omega(logn)$	[Emek,Peleg'06]
Doubling	Small Treewidth	1+ε		[Talwar'04]
Treewidth-k	Treewidth-(k-3)	O(logn)	$\Omega(logn)$	[Carroll,Goel'04]
O(1)-Genus	Planar	O(1)	Ω(1)	[Indyk,S'06]

Implications

Approximation algorithms:

Let *A* be an optimization problem, s.t. the objective depends linearly on the distances of the input metric.

(e.g. Shortest-Paths, MST, k-Median, Clustering, etc.)

If there exists an a-approximation for A on planar graphs, then there exists an O(a)-approximation for A on bounded-genus graphs.

Embedding into L_1 :

If all planar graphs embed into L_1 with distortion γ , then all bounded-genus graphs embed into L_1 with distortion $O(\gamma)$.

Deterministic Embeddings?

There exists a graph of genus 1, s.t. any deterministic embedding into a planar graph has distortion $\Omega(n)$.

Using arguments similar to [Rabinovich,Raz'98], [Gupta'01], [Matousek], [Carroll,Goel'04]

Thus, randomization is necessary.

Curves on Orientable Surfaces - Crash Course

Fact: genus(S\C) = genus(S) - 1

Planarization

Planarization Algorithm:

- Find non-separating cycle C
- Remove C
- Repeat until planar

Reducing the genus by 1

Shortest non-separating cycle
Can be computed e.g. by [Cabello, Chambers'07]

Claim: $|P| \ge |C|/2$

Reducing the genus by 1

Analysis

Consider edge e={u,v}

- $Pr[e \text{ is cut}] \leq 2D(u,v) / |P|$
- If e is cut, then

$$D'(u,v) \le D'(u,z) + |P_1| + |P_2|$$

$$\le D(u,z) + |P| + |P|$$

$$\le 2|P| + |P|/2 + |P|/2$$

$$= O(|P|)$$

• Thus,

$$E[D'(u,v)] = D(u,v) Pr[e \text{ not cut}] +$$

$$O(|P|) Pr[e \text{ is cut}]$$

$$=O(D(u,v))$$

For arbitrary paths, apply linearity of expectation.

Conclusions

- After repeating g times, distortion = $2^{O(g)}$
- Lower bound Ω(log(g)/loglog(g))
 Using standard counting argument

Question: Can we do better?

•Treewidth-6 graphs into planar graphs, $\Omega(\log(n))$ [Carroll,Goel'04]. Thus, there is no generalization to arbitrary minor-closed families!