Probabilistic Embeddings of Bounded Genus Graphs Into Planar Graphs

Anastasios Sidiropoulos (MIT)

Joint work with Piotr Indyk (MIT)

Probabilistic Embeddings

- Given finite metric space $M=(X, D)$
- Obtain distribution $F=\left\{M_{1}, M_{2}, \ldots, M_{k}\right\}, M_{i}=\left(X, D_{i}\right)$, such that $\forall u, v \in X$,
- $\forall \mathrm{M}_{\mathrm{i}} \in F, D_{i}(u, v) \geq D(u, v)$
- $E_{N} \in_{F}\left[D_{N}(u, v)\right] \leq \boldsymbol{\alpha} \cdot D(u, v)$

$\alpha:$ distortion
GOAL : small α

Probabilistic Embeddings - Known Results

From	Into	Upper	Lower	Citation
Cycle	Line	O(1)	$\Omega(1)$	[Karp89]
General	Trees	O(logn)	Ω (logn)	[Alon,Karp,Peleg,West'91], [Bartal'96], [Bartal'98], [Fakcharoenphol,Rao,Talwar'03]
General Graphs	Subtrees	O(log² loglogn)	$\Omega($ logn $)$	[Elkin,Emek,Spielman,Teng'05]
Series-Parallel	Subtrees	O(logn)	Ω (logn)	[Emek,Peleg'06]
Doubling	Small Treewidth	$1+\varepsilon$		[Talwar'04]
Treewidth-k	Treewidth-(k-3)	O(logn)	$\Omega($ logn $)$	[Carroll,Goel'04]
O(1)-Genus	Planar	O(1)	$\Omega(1)$	[Indyk,S'06]

Implications

Approximation algorithms:
Let A be an optimization problem, s.t. the objective depends linearly on the distances of the input metric.

```
(e.g. Shortest-Paths, MST, k-Median, Clustering, etc.)
```

If there exists an a-approximation for A on planar graphs, then there exists an $O(a)$-approximation for A on bounded-genus graphs.

Embedding into L_{1} :
If all planar graphs embed into L_{1} with distortion γ, then all boundedgenus graphs embed into L_{1} with distortion $O(\gamma)$.

Deterministic Embeddings?

There exists a graph of genus 1 , s.t. any deterministic embedding into a planar graph has distortion $\Omega(n)$.

Using arguments similar to [Rabinovich,Raz'98], [Gupta'01], [Matousek], [Carroll,Goel'04]

Thus, randomization is necessary.

Curves on Orientable Surfaces - Crash Course

Fact: $\operatorname{genus}(S I C)=\operatorname{genus}(S)-1$

Planarization

Planarization Algorithm:

- Find non-separating cycle C
- Remove C
- Repeat until planar

Reducing the genus by 1

Claim: $|P| \geq|C| / 2$

Reducing the genus by 1

Analysis

Consider edge $e=\{u, v\}$

- $\operatorname{Pr}[e$ is cut $] \leq 2 D(u, v) /|P|$
- If e is cut, then

$$
\begin{aligned}
D^{\prime}(u, v) & \leq D^{\prime}(u, z)+\left|P_{1}\right|+\left|P_{2}\right| \\
& \leq D(u, z)+|P|+|P| \\
& \leq 2|P|+|P| / 2+|P| / 2 \\
& =O(|P|)
\end{aligned}
$$

- Thus,

$$
\begin{aligned}
E\left[D^{\prime}(u, v)\right]= & D(u, v) \operatorname{Pr}[e \text { not cut }]+ \\
& O(|P|) \operatorname{Pr}[e \text { is cut }] \\
= & O(D(u, v))
\end{aligned}
$$

For arbitrary paths, apply linearity of expectation.

Conclusions

- After repeating g times, distortion $=2^{\circ}(g)$
- Lower bound $\Omega(\log (g) / \log \log (g))$

Using standard counting argument

Question: Can we do better?

-Treewidth-6 graphs into planar graphs, $\Omega(\log (n))$ [Carroll,Goel'04]. Thus, there is no generalization to arbitrary minor-closed families!

