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Abstract

We study the quantitative geometry of graphs in terms
of their genus, using the structure of certain “cut
graphs,” i.e. subgraphs whose removal leaves a pla-
nar graph. In particular, we give optimal bounds for
random partitioning schemes, as well as various types
of embeddings. Using these geometric primitives, we
present exponentially improved dependence on genus for
a number of problems like approximate max-flow/min-
cut theorems, approximations for uniform and non-
uniform Sparsest Cut, treewidth approximation, Lapla-
cian eigenvalue bounds, and Lipschitz extension theo-
rems and related metric labeling problems.

We list here a sample of these improvements. All the
following statements refer to graphs of genus g, unless
otherwise noted.

• We show that such graphs admit an O(log g)-
approximate multi-commodity max-flow/min-cut
theorem for the case of uniform demands. This
bound is optimal, and improves over the previ-
ous bound of O(g) [KPR93, FT03]. For general
demands, we show that the worst possible gap is
O(log g + CP ), where CP is the gap for planar
graphs. This dependence is optimal, and already
yields a bound of O(log g+

√
log n), improving over

the previous bound of O(
√

g log n) [KLMN04].

• We give an O(
√

log g)-approximation for the uni-
form Sparsest Cut, balanced vertex separator, and
treewidth problems, improving over the previous
bound of O(g) [FHL05].

• If a graph G has genus g and maximum degree D,
we show that the kth Laplacian eigenvalue of G
is (log g)2 ·O(kgD/n), improving over the previous
bound of g2 ·O(kgD/n) [KLPT09]. There is a lower
bound of Ω(kgD/n), making this result almost
tight.
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• We show that if (X, d) is the shortest-path metric
on a graph of genus g and S ⊆ X, then every
L-Lipschitz map f : S → Z into a Banach
space Z admits an O(L log g)-Lipschitz extension
f̃ : X → Z. This improves over the previous
bound of O(Lg) [LN05], and compares to a lower
bound of Ω(L

√
log g). In a related way, we show

that there is an O(log g)-approximation for the 0-
extension problem on such graphs, improving over
the previous O(g) bound.

• We show that every n-vertex shortest-path metric
on a graph of genus g embeds into L2 with distor-
tion O(log g+

√
log n), improving over the previous

bound of O(
√

g log n). Our result is asymptotically
optimal for every dependence g = g(n).

1 Introduction

The geometry of finite metric spaces plays a fundamen-
tal role in a number of areas of graph theory, and in the
study of approximation algorithms for NP-hard prob-
lems. Unlike classical metric spaces (e.g. the Euclidean
space Rd), these spaces often do not come equipped
with a natural measure that interacts nicely with the
geometry. To combat this lack of structure, the use of
randomness becomes a fundamental tool.

One of the most prominent techniques involves
random low-diameter partitions. For instance, one
considers a random partition of some metric space (X, d)
into pieces of diameter at most ∆ > 0, with the property
that nearby points are rarely placed into different sets,
e.g. with probability at most κ · d(x, y)/∆ for some
parameter κ > 0 that measures the quality of the
random partition.

Such constructs have been fundamental in areas
like probabilistic embeddings into trees [Bar96, Bar98,
FRT03] (with a host of applications to approxima-
tion and online algorithms), Sparsest Cut and its vari-
ants [KPR93, Rao99, ARV04, CGR05, FHL05], geo-
metric representations of graphs, e.g. [KL03, GKL03,
Rab03, KLMN04, CDG+09, Lee09], the Lipschitz ex-
tension [LN05] and 0-extension problems [CKR01,
FHRT03, AFH+04, LN04], proximity data structures



[CGMZ05, MN07, AGMW07], eigenvalue bounds for
graphs [BLR08, KLPT09], and a host of other approx-
imation algorithms (e.g. for TSP [Tal04] and Unique
Games [CMM06]).

One of the most widely used partition schemes
arises from work of Klein, Plotkin, and Rao [KPR93],
as interpreted by [Rao99], and quantitatively improved
in [FT03]. It is shown that if (X, d) is the shortest-
path metric on a graph which excludes Kh (the com-
plete graph on h vertices) as a minor, then one can take
κ = O(h2) above. In particular, for graphs of genus
g, one has κ = O(g). In the present work, we give a
construction that achieves κ = O(log g), which is the
optimal dependence. Speaking to the power of such
random partitions, this has a number of applications to,
e.g. approximate max-flow/min-cut theorems, approx-
imations for uniform and non-uniform Sparsest Cut,
treewidth approximation, Laplacian eigenvalue bounds,
Lipschitz extension theorems, and various embeddings
into normed spaces. These applications are discussed in
detail in Section 4.1.

In this extended abstract, we focus mainly on ran-
dom partitions schemes. We discuss some additional
geometric consequences of our work in Section 4, in-
cluding a variety of optimal embedding results. The
proofs of these theorems, as well as a full account of
their consequences are deferred to final paper.

We now present some preliminary definitions on
metric spaces. The reader comfortable with this ter-
minology can skip to the technical overview in Section
1.2.

1.1 Preliminaries Throughout the paper, all metric
spaces are assumed to be finite unless otherwise stated.

Graphs and metrics. We deal exclusively with finite
graphs G = (V, E) which are free of loops and parallel
edges. We will also write V (G) and E(G) for the vertex
and edge sets of G, respectively. A metric graph is a
graph G equipped with a non-negative length function
on edges len : E → R+. We will denote the metric
space associated with a graph G as (V, dG), where
dG is the shortest path metric according to the edge
lengths. Note that dG(x, y) = 0 may occur even when
x 6= y, and also if G is disconnected, there will be
pairs x, y ∈ V with dG(x, y) = ∞. We allow both
possibilities throughout the paper. An important point
is that all length functions in the paper are assumed to
be reduced, i.e. they satisfy the property that for every
e = (u, v) ∈ E, len(e) = dG(u, v).

Given a metric graph G, we extend the length func-
tion to paths P ⊆ E by setting len(P ) =

∑
e∈P len(e).

For a pair of vertices a, b ∈ P , we use the notation

P [a, b] to denote the sub-path of P from a to b. We
recall that for a subset S ⊆ V , G[S] represents the in-
duced graph on S. For a pair of subsets S, T ⊆ V , we
use the notations E(S, T ) = {(u, v) ∈ E : u ∈ S, v ∈ T}
and E(S) = E(S, S). For a vertex u ∈ V , we write
N(u) = {v ∈ V : (u, v) ∈ E}.

For a metric space (X, d), a number R ≥ 0, and a
point x ∈ X, we use

B(X,d)(x,R) = {y ∈ X : d(x, y) ≤ R}
to denote the closed ball of radius R about x in X. If
the metric space is clear from context, we sometimes
just write B(x, R). For a subset S ⊆ X, we write
diam(X,d)(S) = maxx,y∈S d(x, y). Again, we omit the
subscript if the metric and/or space are clear from
context. Finally, for sets S, T ⊆ X and a point x ∈ X,
we use the notations d(x, S) = miny∈S d(x, y) and
d(T, S) = minx∈T d(x, S).

Embeddings and distortion. If (X, dX), (Y, dY ) are
metric spaces, and f : X → Y , then we write

‖f‖Lip = sup
x6=y∈X

dY (f(x), f(y))
dX(x, y)

.

If f is injective, then the distortion of f is defined by
dist(f) = ‖f‖Lip ·‖f−1‖Lip. If dY (f(x), f(y)) ≤ dX(x, y)
for every x, y ∈ X, we say that f is non-expansive. For
p ≥ 1, we write cp(X, dX) for the infimal distortion over
all maps from X into some Lp space.

1.2 Technical overview Let G = (V, E) be a metric
graph of genus g (i.e. which can be drawn on an
orientable surface of genus g without edge crossings).
Given a parameter ∆ > 0, our goal is to produce a
random partition P of V into sets of diameter at most ∆,
with the property that for every x ∈ V , the probability
that B(x, ∆/α) is all mapped to the same set of P
is Ω(1). Here, α is some parameter; our goal is to
achieve α = O(log g). We refer to Section 2 for a formal
discussion of random partitions.

In Section 2.1, we develop some generic primitives
for combining and manipulating these kinds of parti-
tions. In particular, we show that if there is a subgraph
H of G such that if both (V (H), dG) and the induced
path metric on G \ H admit good random partitions,
then so does (V, dG). Note that the induced path met-
ric on G\H is not the same as dG restricted to V (G\H).

This immediately suggests an approach: Find a
subgraph H so that G \ H is planar, and (V (H), dG)
admits good random partitions. Then the planar
portion G \ H can be dealt with using [KPR93]. We
do this in Section 3 by letting H consist of a system of
cycles in G, each of which is a shortest representative



from its homotopy class. It is easy to deduce that H
itself is a union of O(g) shortest paths in G. Since each
shortest path, being isometric to a subset of the real
line, admits good random partitions, it suffices to show
that we can achieve α = O(log g) for the union of such
objects. This is done in Lemma 2.7 using a modification
of the random partitioning algorithm of [CKR01]. The
final result appears in Theorem 4.1.

In Section 4.1, we discuss various applications of
this scheme, as well as applications of the additional
embedding theorems stated in 4.

2 Random partitions

In the present section, we will provide some basic
primitives for random partitions of metric spaces. First,
we introduce the three types of random partitions that
we will be most interested in. Fix a metric space (X, d).
If P is a partition of X, we will often think of it is as
a mapping P : X → 2X which sends a point x ∈ X to
the set P (x) ∈ P with x ∈ P (x).

Padded partitions. Let P be a random partition of
X. We say that P is (ρ, δ,∆)-padded if the following
conditions hold.

1. For all Q ∈ supp(P ), for all S ∈ P , we have
diam(S) ≤ ∆.

2. For every x ∈ X,

Pr [B(x, ρ) ⊆ P (x)] ≥ δ.

We write α(X, d; δ,∆) for the infimal constant α ≥ 1
such that (X, d) admits a (∆/α, δ,∆)-padded random
partition.

Lipschitz partitions. Let P be a random partition of
X. We say that P is (L, ∆)-Lipschitz if the following
conditions hold.

1. For all Q ∈ supp(P ), for all S ∈ P , we have
diam(S) ≤ ∆.

2. For every x, y ∈ X,

Pr [P (x) 6= P (y)] ≤ L · d(x, y).

We write β(X, d;∆) for the infimal constant β ≥ 1
such that (X, d) admits a (β/∆, ∆)-Lipschitz random
partition.

Spreading partitions. We say that (X, d) admits a
(ρ, δ,∆)-spreading partition if there is a random parti-
tion X = Z ∪ Z̄ such that for all x, y ∈ X satisfying
d(x, y) > ∆, we have

Pr [x ∈ Z and d(y, Z) ≥ ρ] ≥ δ.

We write ζ(X, d; δ,∆) for the infimal constant ζ ≥ 1
such that (X, d) admits a (∆/ζ, δ, ∆)-spreading parti-
tion.

We recall some known theorems on the relationships
between such partitions. The next two lemmas are from
[LN04]. The first shows that padded partitions yield
Lipschitz partitions of similar parameters.

Lemma 2.1. (Padded to Lipschitz) If (X, d) ad-
mits a (ρ, δ,∆)-padded partition, then it also admits an
(4δρ, 2∆)-Lipschitz partition.

Lemma 2.2. For every δ > 0, ∆ > 0, there exists a
constant C ≥ 1 and a d ≥ 1 such that (Rd, ‖ · ‖2) does
not admit a (C∆/d, δ, ∆)-padded partition.

On the other hand, we have the following result
from [CCGG98] which, when combined with the preced-
ing lemma, shows that padded partitions are, in some
sense, strictly stronger than Lipschitz partitions.

Lemma 2.3. For every ∆ > 0 and d ≥ 1, there exists a
(∆/O(

√
d), ∆)-Lipschitz partition of (Rd, ‖ · ‖2).

Lemma 2.4. (Padded to spreading) If (X, d) ad-
mits a (ρ, δ,∆)-padded partition, then it also admits a
(ρ, δ/4,∆)-spreading partition.

Proof. Let P : X → 2X be a (ρ, δ,∆)-padded partition.
For every C ∈ P , let σC ∈ {0, 1} be an independent,
uniformly distributed random variable. Define a ran-
dom subset Z ⊆ X by

Z = {x ∈ X : σP (x) = 0}.
We claim that Z∪Z̄ is a (ρ, δ/4,∆)-spreading partition.
To see this, consider x, y ∈ X with d(x, y) > ∆.
Then if the two independent events {σP (x) = 0} and
{σP (y) = 1} occur as well as the event {B(y, ρ) ⊆ P (y)},
then x ∈ Z and d(y, Z) ≥ ρ. Clearly the probability of
these three events occurring simultaneously is at least
δ · (1/2)2, completing the proof.

We now list some known results about the existence
of such partitions. The first is an elementary observa-
tion.

Lemma 2.5. If X ⊆ R, then for any δ ∈ (0, 1),∆ > 0,
α(X, | · |; δ,∆) ≤ 2/(1− δ).

The next theorem follows from the work of Klein,
Plotkin, and Rao [KPR93] as envisioned in [Rao99],
with the listed quantitative bound due to [FT03].

Theorem 2.1. If G = (V,E) is a graph metric and
G excludes Kr as a minor, then for every ∆ > 0,
α(V, dG; 1

2 ,∆) = O(r2). In particular, if G has genus
g, then α(V, dG; 1

2 ,∆) = O(g).



The next theorem is due to Bartal [Bar96] (see also
[CKR01] for an alternate proof).

Theorem 2.2. For any finite metric space (X, d) and
any ∆ > 0, α(X, d; 1

2 ,∆) = O(log |X|).
Finally, we state the following theorem of Lee

[Lee05], which relies heavily on the work of Arora, Rao,
and Vazirani [ARV04].

Theorem 2.3. There exists a constant δ > 0 such that
the following holds for every ∆ > 0. If (X, d) is a finite
metric space for which (X,

√
d) admits a C-bi-Lipschitz

embedding into a Hilbert space, then ζ(X, d; δ,∆) =
O(C2

√
log |X|).

2.1 Padded partitions The following lemmas refer
to a metric space (X, d). For a subset S ⊆ X, we
use Nβ(S) = {x ∈ X : d(x, S) ≤ β} to denote the
β-neighborhood of S in X.

Lemma 2.6. (Extension to neighborhoods) For
every δ,∆ > 0 and S ⊆ X, the following holds. If (S, d)
admits a (ρ, δ,∆)-padded partition, then (Nρ/4(S), d)
admits a (ρ/2, δ,∆ + ρ/2)-padded partition.

Proof. Let Ŝ = Nρ/4(S). Let P be a (ρ, δ,∆)-padded
partition of (S, d). Let Γ : X → S be chosen so that
d(x, Γ(x)) = d(x, S) for every x ∈ X. Construct a
random partition P̂ of Ŝ by defining, for every C ∈ P ,
Ĉ = {x ∈ Ŝ : Γ(x) ∈ C}. It is clear that {Ĉ}C∈P is a
partition of Ŝ, and for any C ∈ P ,

diam(Ĉ) ≤ diam(C) + 2(ρ/4) ≤ ∆ + ρ/2.

Now, consider any x ∈ Ŝ. If BS(Γ(x), ρ) ⊆ P (x),
we claim that BŜ(x, ρ/2) ⊆ P̂ (x). This follows because
if y ∈ Ŝ is such that d(x, y) ≤ ρ/2, then

d(Γ(x),Γ(y)) ≤ d(x, Γ(x)) + d(x, y) + d(y, Γ(y)) ≤ ρ,

implying that P̂ (x) = P̂ (y) under our assumption.
Thus,

Pr[BŜ(x, ρ/2) ⊆ P̂ (x)] ≥ Pr[BS(Γ(x), ρ) ⊆ P (x)] ≥ δ.

Lemma 2.7. (Composition for finite coverings)
Let C1, C2, . . . , Ck ⊆ X and δ,∆ > 0 be arbitrary.
Suppose that for each i ∈ [k], (Ci, d) admits a (ρ, δ,∆)-
padded random partition Pi. If S = C1 ∪ C2 ∪ · · · ∪ Ck,
then (S, d) admits a (ρ/O(log k), δ/2, ∆ + ρ/2)-padded
partition.

Proof. Let π be a random permutation of {1, 2, . . . , k},
and let α ∈ [ 12 , 1] be chosen uniformly at random. For
i = 1, 2, . . . , k define

Si =
{
x : d(x,Cπ(i)) ≤ αρ/4

} \ {S1 ∪ · · · ∪ Si−1}

It is clear that {S1, . . . , Sk} forms a partition of S, which
we call P0.

Now, by definition Si ⊆ Nρ/4(Cπ(i)), hence ap-
plying Lemma 2.6 to Pπ(i) yields a (ρ/2, δ,∆ + ρ/2)-
padded partition P̂i of Si. Our final partition of S
is P =

⋃k
i=1 P̂i. We proceed to prove that P is

(ρ/O(log k), 1
2δ,∆ + ρ/2)-padded. The diameter bound

is clear.

Fixing x ∈ S and R ≤ ρ/2, we have

Pr [BS(x,R) ⊆ P (x)]
≥ Pr [BS(x,R) ⊆ P0(x)]

·Pr [BS(x, R) ⊆ P (x) |BS(x,R) ⊆ P0(x)]
≥ δ · Pr [BS(x, R) ⊆ P0(x)] ,

using the fact that each P̂i is (ρ/2, δ,∆ + ρ/2)-
padded. Thus it suffices to prove that
Pr [BS(x, ρ/(C log k)) ⊆ P0(x)] ≥ 1

2 for some suffi-
ciently large constant C ≥ 1. The analysis follows
[CKR01].

Order the sets Ci1 , Ci2 , . . . , Cik
in increasing order

of their distance from x, i.e. so that d(x,Cij ) ≤
d(x,Cij+1) for j = 1, 2, . . . , k − 1. Let Ij = [d(x,Cij )−
R, d(x,Cij ) + R]. Write Ej for the event that αρ/4 ≤
d(x,Cij )+R and ij is the minimal element, according to
the total order on {1, 2, . . . , k} induced by π, for which
αρ/4 ≥ d(x,Cij ) − R. It is not difficult to see that
the event {BS(x, t) * P0(x)} is contained in the events⋃k

j=1 Ej , hence

Pr [BS(x, t) * P0(x)] ≤
k∑

j=1

Pr[Ej ]

=
k∑

j=1

Pr[αρ/4 ∈ Ij ] · Pr [Ej |αρ/4 ∈ Ij ]

≤
k∑

j=1

2R

ρ/8
· 1
j
≤ O(log k)

R

ρ
,

where we have used the fact that, conditioned on αρ/4 ∈
Ij , Ej only occurs if ij is the minimal index (according
to π) among {i1, . . . , ij}. It is now clear that we can
choose R ≥ ρ/(C log k) (for a suitable constant C) such
that Pr [BS(x, t) * P0(x)] ≤ 1

2 , completing the proof.

The next lemma is specific to metrics with a graph
structure.

Lemma 2.8. Let G = (V,E) be a metric graph, and
S ⊆ V an arbitrary subset. Suppose that

1. (S, d) admits a (ρ, δ,∆)-padded partition.



2. For every R ⊆ V with R∩S = ∅, (R, dG[R]) admits
a (ρ, δ,∆)-padded partition.

Then, (V, dG) admits an (ρ/32, δ/2,∆ + ρ/2)-padded
partition.

Proof. Let P : S → 2S be the partition from condition
(1) above and for every R ⊆ V with R ∩ S = ∅, let
PR : R → 2R be the partition promised by condition
(2) above. Let Γ : V → S be such that dG(x, Γ(x)) =
dG(x, S) for all x ∈ V .

Now, let β ∈ [0, 1] be chosen uniformly at ran-
dom, and put R = V \ Nβρ/4(S). Let P̂ be the
(ρ/2, δ,∆ + ρ/2)-padded partition of Nβρ/4(S) guaran-
teed by applying Lemma 2.6 to P . Define a random
partition P ∗ : V → 2V by

P ∗(x) =

{
PR(x) x ∈ R

P̂ (x) otherwise

For every x ∈ V \ R, we have diam(V,dG)(P (x)) ≤
∆ + ρ/2 and for every x ∈ R,

diam(V,dG)(PR(x)) ≤ diam(R,dG[R])(PR(x)) ≤ ∆,

where the latter inequality follows because dG(x, y) ≤
dG[R](x, y) for all x, y ∈ R.

Consider now any point x ∈ V . Let E be the event
{
B(V,dG)(x, ρ/16) ⊆ R

} ∪ {
B(V,dG)(x, ρ/16) ⊆ V \R

}
.

Then, by our random choice of β ∈ [0, 1], we have

Pr[E ] ≥ 1− 2 · (ρ/16)
ρ/4

=
1
2
.

Now, observe that if B(V,dG)(x, ρ/16) ⊆ V \R, then

Pr[B(V,dG)(x, ρ/16) ⊆ P ∗(x)]

= Pr[B(V,dG)(x, ρ/16) ⊆ P̂ (x)] ≥ δ.

On the other hand, if B(V,dG)(x, ρ/16) ⊆ R, then

B(V,dG)(x, ρ/32) = B(R,dG[R])(x, ρ/32),

hence

Pr[B(V,dG)(x, ρ/32) ⊆ P ∗(x)]
= Pr[B(R,dG[R])(x, ρ/32) ⊆ PR(x)] ≥ δ.

It follows that

Pr[B(V,dG)(x, ρ/32) ⊆ P ∗(x)] ≥ Pr[E ] · δ ≥ δ/2,

completing the proof.

Figure 1: Example of systems of loops for surfaces of
genus 1 and 2.

3 Homotopy generators and the cut graph

Let G be a genus-g graph embedded into an orientable
genus-g surface S, and let x be a vertex of G. A system
of loops with basepoint x is a collection of 2g cycles
C1, . . . , C2g containing x such that the complement of⋃2g

i=1 Ci in S is homeomorphic to a disk. Examples
of systems of loops are depicted in figure 1 (see also
[EW05]). A system of loops is called optimal if every Ci

is the shortest cycle in its homotopy class. We remark
that the set of cycles in a system of loops is a set of
generators for the fundamental group π1(S, x).

Algorithms for computing optimal systems of loops
have been given by Colin de Verdière and Lazarus
[dVL02] and by Erickson and Whittlesey [EW05]. The
later algorithm works as follows: Let T be a shortest-
path tree in G with root the basepoint x. For every edge
e ∈ G\T let σ(e) be the loop obtained by concatenating
e with the two paths in T between x and the end-points
of e. Let also J be the dual of G \ T in S. For every
edge e ∈ G \ T , we set the weight of its dual e∗ ∈ J to
be equal to len(σ(e)). Let T ′ be a maximum spanning
tree in J . Finally, let A be the set of the duals of the
edges of J , that are not in T ′. The resulting system of
loops is X = {σ(e)}e∈A.

It now easily follows that the union of all the cycles
in X can by decomposed into O(g) shortest paths with
disjoint interiors. To see that, let R be the subtree of T
induced by all the paths between x and the end-points
of the edges in A. Since |A| = 2g, it follows that R
has at most 4g leaves. Moreover, every branch of R is a
shortest path, and therefore R can be decomposed into
at most 8g − 1 shortest paths. Since every edge in A
is trivially also a shortest path, we obtain the following
lemma.

Lemma 3.1. Let G be a graph embedded into an ori-
entable surface S of genus g. Then, there exists a sub-
graph H of G such that the complement of H in S is
homeomorphic to a disk, satisfying the following prop-
erties:

(a) There exists a collection of k ≤ 12g − 1 shortest
paths P1, . . . , Pk in G with disjoint interiors, such
that H =

⋃
i∈[k] Pi.



(b) There exists a collection of 4g shortest-paths
Q1, . . . , Q4g in G, having x as a common end-point,
such that V (H) =

⋃
i∈[4g] V (Qi).

3.1 Properties of the cut graph We now prove
some properties of the metric (V (H), dG) from Lemma
3.1. Our first lemma gives a family of padded partitions.

Lemma 3.2. Let (X, d) be any metric space with X ⊆
C1∪· · ·∪Ck, where each Ci is isometric to a subset of the
real line. Then for any ∆ > 0, α(X, d; 1

4 ,∆) = O(log k).

Proof. By Lemma 2.5, for every ∆′ > 0, there exists
a (∆′/4, 1

2 ,∆′)-padded partition of each Ci. Now
applying Lemma 2.7 yields a (∆′/O(log k), 1

4 , 5∆′/4)-
padded partition of (X, d). Setting ∆ = 5∆′/4 yields
a (∆/O(log k), 1

4 , ∆)-padded partition for every ∆ > 0,
completing the proof.

The next lemma shows that (V (H), dG) is close to
a metric of bounded pathwidth.

Lemma 3.3. The metric (V (H), dG) from Lemma 3.1
embeds into a graph of pathwidth O(g) with distortion
O(1).

Proof. We will define a graph J with V (H) = V (J) of
pathwidth O(g). By Lemma 3.1(b). We have that there
exists x ∈ V (H), and shortest-paths Q1, . . . , Q4g in G
having x as a common end-point, such that

V (H) =
⋃

i∈[4g]

Qi.

In order to simplify the argument, we will assume
that each path Qi consists of unit-length edges. This
is without loss of generality because after scaling we
can assume that the distances are integers, and we can
replace every edge {u, v} by a path of lenG(u, v) unit-
length edges, without changing the distances in the
graph.

Suppose that for each i ∈ 4g we have Qi =
qi,1, . . . , qi,ti , where qi,1 = x. Let t = maxi∈[4g] ti.
First, we define a path-decomposition X for J , with
X = {Xi}t

i=1. We set

X1 = {x},
and for any i > 1, we set

Xi =
⋃

j∈[4g]

{qmax{ti,i−1},j , qmax{ti,i},j}.

Finally, we define the edge-set of J to be

E(J) =
⋃

X∈X

⋃

u 6=v∈X

{u, v},

and we set the length of each edge {u, v} ∈ E(J) to be
dG(u, v). It is clear that X is a path-decomposition for
J , of width 8g − 1.

It remains to show that the induced embedding
of (V (H), dG) into (V (J), dJ) has small distortion. It
is clear that the embedding is non-contracting, so it
suffices to bound the expansion. Consider u, v ∈ V (H),
and let u ∈ V (Qi), v ∈ V (Qj). Fix a shortest-path P
between u and v in G. Assume w.l.o.g. that u = qi,l,
v = qj,r, for some l ∈ [ti], r ∈ [tj ]. We have

dJ(u, v) ≤ dJ(qi,l, qj,l) + dJ(qj,l, qj,r)
= dG(qi,l, qj,l) + dG(qj,l, qj,r)
= dG(qi,l, qj,r)− 2|l − r|
= dG(u, v) + 2|dG(x, u)− dG(x, v)|
≤ 3dG(u, v)

Therefore, the distortion is at most 3.

4 Partitions, embeddings, and applications

Our first theorem concerns padded partitions of
bounded genus graphs.

Theorem 4.1. Let G = (V, E) be a metric graph
of orientable genus g. Then for every ∆ > 0,
α(V, dG; 1

8 ,∆) = O(log g).

Proof. Let H be the subgraph guaranteed by Lemma
3.1. By Lemma 3.1(a) and Lemma 3.2, for every
∆ > 0, (V (H), dG) admits a (∆/O(log g), 1

4 , ∆)-padded
partition. Now, upon removing V (H) from V , the
induced graph G[V \ V (H)] is planar, hence for any
R ⊆ V with R ∩ V (H) = ∅, (R, dG[R]) is the shortest-
path metric on a planar graph, hence by Theorem 2.1,
for every ∆ > 0, this metric admits a (∆/O(1), 1

4 , ∆)-
padded partition. Applying Lemma 2.8 with S =
V (H) yields a (∆/O(log g), 1

8 , O(∆))-padded partition
of (V, dG), yielding the statement of the theorem.

Now, consider a finite metric space (X, d), and a
non-negative weight function ω : X × X → [0,∞)
which is symmetric, i.e. such that ω(x, y) = ω(y, x)
for all x, y ∈ X. For any p ∈ (0,∞), to any mapping
f : X → R we associate the quantity

avdω,p(f) = ‖f‖Lip

(∑
x,y∈X ω(x, y)|f(x)− f(y)|p∑

x,y∈X ω(x, y) d(x, y)p

)1/p

.

This is notion of “average distortion” of a mapping was
studied by Rabinovich [Rab03], and is closely related to
concepts like concentration of measure [MS86] and the
observable diameter of a metric space [Gro07]. There
are a number of applications of such mappings; see



[FHL05] for applications of the p = 1 case, and [BLR08]
for p = 2. We will be particularly interested in the case
where ω can be written as ω(x, y) = π(x)π(y) for some
π : X → [0,∞). We refer to such an ω as a product
weight.

The following theorem is useful in analyzing various
semi-definite programs.

Theorem 4.2. Let G = (V, E) be a graph of orientable
genus g. Let (V, d) be a metric space with the property
that (V,

√
d) embeds isometrically into a Hilbert space,

and let dG be the path metric arising from an edge (u, v)
having length d(u, v). Then for every p ≥ 1 and product
weight ω, there exist a mapping f : (V, dG) → R with

avdω,p(f) . C(p)
√

log g,

where C(p) is some constant depending only on p.

The proof of this theorem is deferred to the full
version. Using known results on average distortion
embeddings in planar graphs [Rab03, KPR99], through
a sequence of reductions, it suffices to find such an
embedding for the cut graph. For this purpose, we
use Lemma 3.3, in conjunction with the technique of
Rabinovich [Rab03] for graphs of small treewidth.

Next, we have the following theorem on Euclidean
embeddings.

Theorem 4.3. Let G = (V,E) be a metric graph of
orientable genus g. Then there is an embedding f :
(V, dG) → L2 with dist(f) . log g +

√
log |V |.

In the full version, we prove this theorem by com-
bining the planar embedding theorem of Rao [Rao99]
with an embedding of the cut graph that requires
only O(log g) distortion. The latter embedding is con-
structed in a novel way using the measured descent tech-
nique [KLMN04].

Finally, we have the following two conditional em-
bedding theorems.

Theorem 4.4. Let C(n) be the supremum of c1(X, d)
over all n-point planar graph metrics. Then for every
metric graph G = (V, E) of orientable genus g, we have

c1(V, dG) . log g + C(n).

Theorem 4.5. If every metric supported on a graph of
pathwidth k probabilistically embeds into a distribution
over trees with distortion f(k), then genus-g graphs
probabilistically embed into a distribution over planar
graphs with distortion f(O(g)) ·O(log g).

4.1 Applications We now give some sample applica-
tions. We defer a more complete list to the full version.

Sparsest Cut and multi-commodity flows. It
is well-known that Theorem 4.1 implies an O(log g)-
approximate max-flow/min-cut theorem for product
multi-commodity flow instances in genus-g graphs (see
[LR99] and [Rab03]). This improves over the bound
of O(g) from [KPR93, FT03], and is tight as n-vertex
expander graphs yield an Ω(log n) gap [LR99]. Since
every n-vertex graph has genus O(n2), this yields the
desired lower bound. This also yields an O(log g)-
approximation to Sparsest Cut with uniform demands
[Rab03],

In the case of general demands, Theorem 4.3 implies
an O(log g +

√
log n)-approximate max-flow/min-cut

theorem, and Theorem 4.4 implies that in general the
gap is at most O(log g + CP (n)), where CP (n) is the
maximum gap for an n-point planar network.

Vertex cuts and treewidth approximation. Us-
ing Theorem 4.2 in conjunction with [FHL05] yields an
O(
√

log g)-approximation for the edge and vertex ver-
sions of uniform Sparsest Cut, as well as an O(

√
log g)-

approximation for approximately optimal tree decom-
positions and approximating treewidth. This improves
over the previous bounds of O(g).

Laplacian eigenvalue bounds. In a direct appli-
cation of Theorem 4.1 in the paper [KLPT09], it fol-
lows that if a graph G has genus g and maximum de-
gree D, then the kth Laplacian eigenvalue is at most
O(kDg/n)·(log g)2. Note that this bound is almost tight
as there are examples (see [GHT84]) which have kth
eigenvalue Ω(kDg/n). The previous bound had (log g)2

replaced by g2.

Lipschitz extension and 0-extension. When com-
bined with [LN05], Theorem 4.1 yields the following.
Let Z be a Banach space. For any metric graph
G = (V, E) of genus-g, any S ⊆ V , and any f : S → Z,
there exists a mapping f̃ : V → Z with f̃ |S = f and
‖f̃‖Lip ≤ O(log g)‖f‖Lip. This improves over the previ-
ous bound of O(g) and compares to the known lower
bound of Ω(

√
log g) (coming from an n-point metric

space with an Ω(
√

log n) lower bound [JL84]).
When combined with either [AFH+04] or [LN04]

(the former paper uses the earthmover relaxation,
while the latter uses the standard 0-extension LP from
[CKR01]), this yields an O(log g)-approximation to the
0-extension problems on graphs of genus g.
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