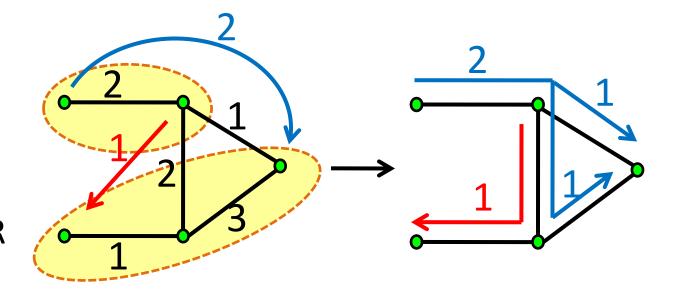
On the geometry of graphs with a forbidden minor

James R. Lee (U. of Washington)
Anastasios Sidiropoulos (U. of Toronto)

Multi-commodity flows

Instance:

- G=(V,E)
- cap : E→R
- dem : V×V→R



max-flow = max concurrent flow
sparsity of a cut S = (capacity in S) / (demand crossing S)
max-flow ≤ sparsest-cut

Approximating the Sparsest-Cut

- O(log n)-approximation [Linial,London,Rabinovich'95], [Leighton,Rao'88]
- O(log^{1/2} n loglog n)-approximation
 [Arora,Lee,Naor'05], [Arora,Rao,Vazirani'04]
- 1.001-hard [Ambuhl, Mastrolilli, Svensson'07]
- ω(1)-hard assuming Unique Games
 [Khot, Vishnoi '05],
 [Chawla, Krauthgamer, Kumar, Rabani, Sivakumar '05]

Sparsest-Cut and L₁ embeddings

```
gap(G) = \max_{cap,dem} sparsest-cut / \max-flow
c<sub>1</sub>(G) = \inf\{c : G \text{ embeds into } L_1 \text{ with distortion } c\}
```

Theorem [Linial,London,Rabinovich'95] [Aumann,Rabani'98] For every graph G, $gap(G)=c_1(G)$

Conjecture [Gupta, Newman, Rabinovich, Sinclair'99] Every nontrivial minor-closed graph family embeds into L_1 with distortion O(1)

Progress on the GNRS conjecture

- Series-parallel graphs
 [Gupta, Newman, Rabinovich, Sinclair '99]
- O(1)-outerplanar graphs
 [Chekuri, Gupta, Newman, Rabinovich, Sinclair '03]
- W₄-free graphs [Chakrabarti, Jaffe, Lee, Vincent'08]
- If true for planar graphs, then also true for O(1)genus graphs [Indyk, S '07]
- 2-ε lower bound for planar graphs [Lee,Raghaventra'07]

Our results

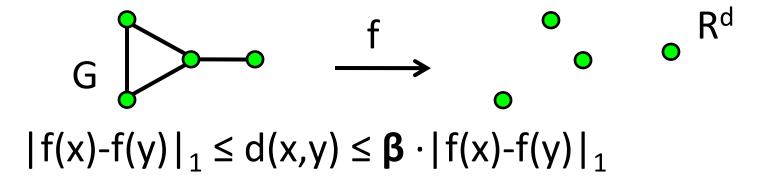
Theorem [Lee, S'09] The GNRS is true for O(1)-pathwidth graphs

Theorem [Lee, S'09] The GNRS is true iff

- planar graphs embed into L₁ with distortion O(1),
 and
- O(1)-distortion embeddability into L_1 is closed under O(1)-clique-sums

The main tool: Stochastic embeddings

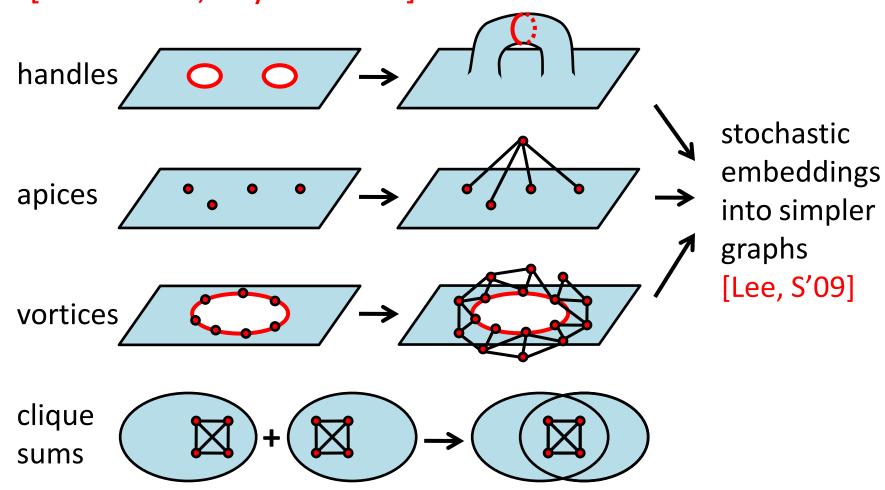
Deterministic embeddings into L₁



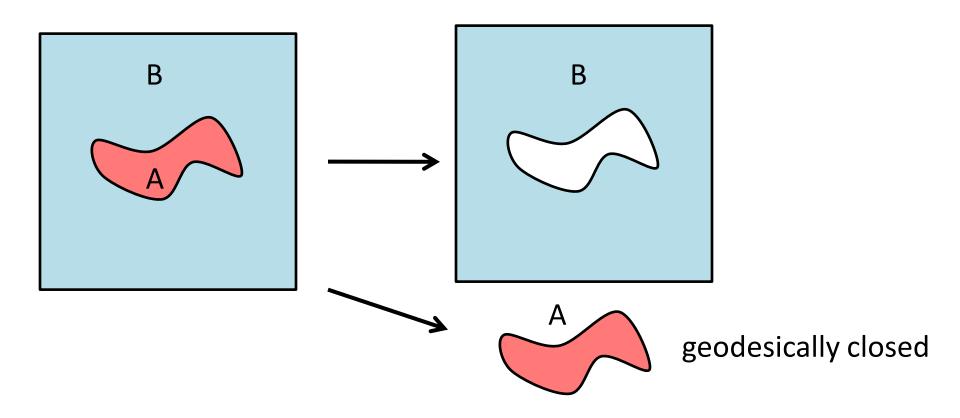
Stochastic embedding approach

The Graph Minor Theorem

How to construct any non-trivial minor-closed graph family [Robertson, Seymour '99]



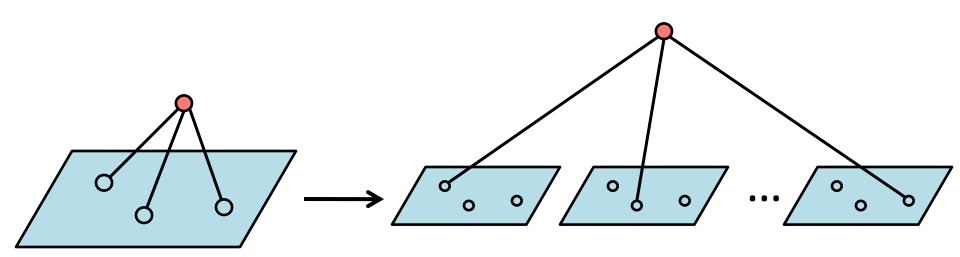
The peeling lemma



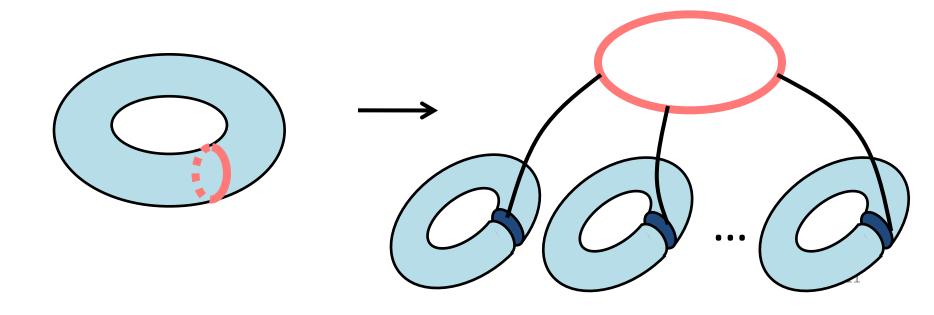
Peeling Lemma [Lee, S'09]

 $A \cup B$ stochastically O(1)-embeds into 1-sums of A with B

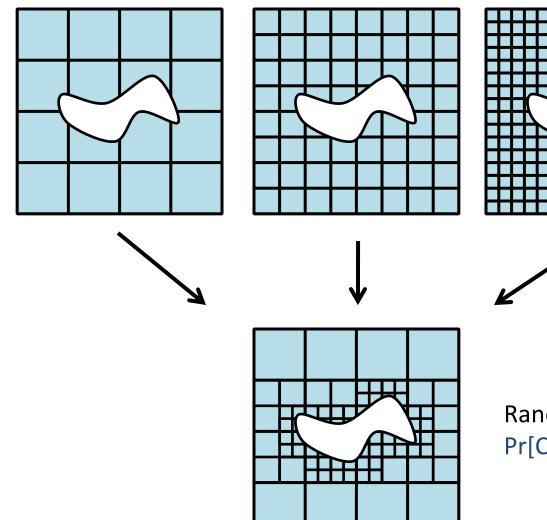
The peeling lemma: removing apices

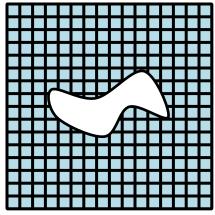


The peeling lemma: removing handles



The peeling lemma (proof)



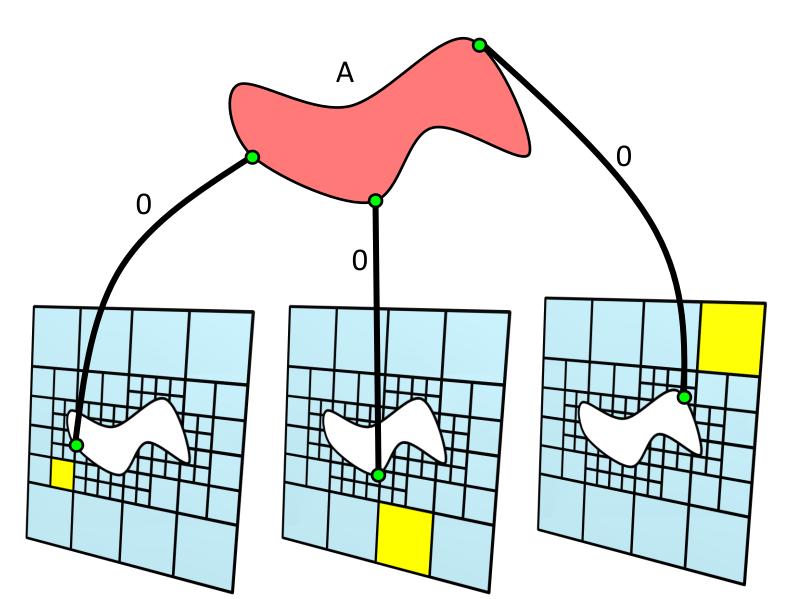


Random decomposition for every scale [Klein, Plotkin, Rao'93]

At scale r: $Pr[C(x)\neq C(y)] \approx d(x,y)/r$

Random retraction [Lee, Naor] $Pr[C(x)\neq C(y)] \approx d(x,y) / d(\{x,y\}, A)$

The peeling lemma (proof)



Further applications

Theorem [Okamura, Seymour '81] For any multiflow instance with terminals on a face of a planar graph, max-flow=min-cut

Theorem [Lee,S'09] For any multi-flow instance with terminals on O(1) faces of a O(1)-genus graph, max-flow=O(1)·min-cut

Open questions

- What are the actual constants?
 - Recent progress: Õ (log^{1/2} g)-approximation for uniform Sparsest-Cut on genus-g graphs [Lee,S]
 Improves O(g²)-approximation [Fakcharoenphol,Talwar'03], [Klein,Plotkin,Rao'93]

Embedding into L₁:

– Embedding planar graphs with distortion O(1)?