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ABSTRACT

It was shown in [11] that any orientable graph of genus g can
be probabilistically embedded into a graph of genus g — 1
with constant distortion. Removing handles one by one gives
an embedding into a distribution over planar graphs with
distortion 2°). By removing all g handles at once, we
present a probabilistic embedding with distortion O(g?) for
both orientable and non-orientable graphs. Our result is
obtained by showing that the minimum-cut graph of [6] has
low dilation, and then randomly cutting this graph out of
the surface using the Peeling Lemma from [13].
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1. INTRODUCTION

Planar graphs constitute an important class of combina-
torial structures, since they can often be used to model a
wide variety of natural objects. At the same time, they
have properties that give rise to improved algorithmic solu-
tions for numerous graph problems, if one restricts the set
of possible inputs to planar graphs (see e.g. [1, 3]).

One natural generalization of planarity uses the genus of
a graph. Informally, a graph has genus g, for some g > 0,
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if it can be drawn without any crossings on the surface of
a sphere with g additional handles (see Section 1.1). For
example, a planar graph has genus 0, and a graph that can
be drawn on a torus has genus 1.

In a way, the genus of a graph quantifies how far a graph
is from being planar. Because of their similarities to planar
graphs, graphs of small genus usually exhibit nice algorith-
mic properties. More precisely, algorithms for planar graphs
can usually be extended to graphs of bounded genus, with a
small loss in efficiency (e.g. [4]), or in the quality of the solu-
tion. Unfortunately, some such extensions are complicated
and based on ad-hoc techniques.

Inspired by Bartal’s probabilistic approximation of gen-
eral metrics by trees [2], Sidiropoulos and Indyk showed that
every metric on a graph of genus g can be probabilistically
approximated by a planar graph metric with distortion at
most exponential in g [11]. (See Section 1.1 for a formal def-
inition of probabilistic embeddings, a randomized mapping
between spaces preserving distances in expectation). Since
the distortion fundamentally affects the quality of the reduc-
tion, it is desirable to make this quantity as small as possible.
In the present paper, we show that the dependence of the
distortion on the genus can be made significantly smaller:
O(g®) for graphs of orientable or non-orientable genus g.
This requires a fundamental change over the approach of
[11] which removes one handle at a time from the graph.

Removing all the handles at once. Since (randomly)
removing handles one at a time incurs an exponential loss
in distortion, we look for a way to remove all the handles at
once.

Our starting point is the minimum-length cut graph of
Erickson and Har-Peled [6]. Given a graph G the minimum-
length cut graph is (roughly speaking) a minimum-length
subgraph H of G such that G \ H is planar. In Section
2.2, we show that this H is nearly geodesically closed in
that du (u,v) = dg(u,v) for all u,v € V(H), where dg and
dg are the shortest-path metrics on H and G, respectively.
Simply removing H from G could result in unbounded dis-
tortion for some pairs of vertices of G. The geodesic-closure
property suggests that if we could randomly shift H, then
the distortion of all pairs of vertices in G would be fine in
expectation.

We use the Peeling Lemma of [13] to perform the ran-
dom shifting (Section 2.1). The Peeling Lemma allows one
to randomly embed G into a graph consisting of copies of
G \ H hanging off an isomorphic copy of H, while keep-
ing the expected distortion of pairs of vertices in G small.
The lemma requires an appropriate random partition of the



shortest-path metric on G. Such a procedure is provided by
the fundamental result of Klein, Plotkin, and Rao [12] for
partitioning graphs excluding a fixed minor.

This completes the proof, except that H itself might not
be planar. However, H does have small Euler character-
istic! [6] and so admits a probabilistic embedding into a
distribution over trees [9, 7]. In Section 2.3, we combine
these ingredients to provide a probabilistic embedding with
distortion O(g?).

In Section 3, we show that any such probabilistic embed-
ding incurs at least Q(log g) distortion. (A lower bound of
Q(log g/ loglog g) was given in [11].) This still leaves an
exponential gap between our upper in lower bounds. We
study the limitations of our particular techniques and show
an Q(g) lower bound for a restricted class of approaches.

1.1 Prdiminaries

Throughout the paper, we consider graphs G = (V, E)
with a non-negative length function len : E — R. We refer
to these as metric graphs. For pairs of vertices u,v € V', we
denote the length of the shortest path between u and v in
G, with the lengths of edges given by len, by dg(u,v).

Graphs on surfaces.

Let us recall some notions from topological graph theory
(an in-depth exposition can be found in [15]). A surface is a
compact connected 2-dimensional manifold, without bound-
ary. For a graph G we can define a one-dimensional sim-
plicial complex C' associated with G as follows: The 0-cells
of C' are the vertices of G, and for each edge {u,v} of G,
there is a 1-cell in C connecting u and v. An embedding of
G on a surface S is a continuous injection f: C — V. The
orientable genus of a graph G is the smallest integer g > 0
such that C' can be embedded into a sphere with g handles.
The non-orientable genus of G is the smallest ineger k > 0
such that G can be embedded into a sphere with k disjoint
caps replaced by copies of the projective plane. Note that a
graph of genus 0 is a planar graph.

Metric embeddings.

We use the notion of stochastic embeddings introduced in
[2]. We say that a graph H dominates a graph G, if V(G) C
V(H), and for any u,v € V(G), da(u,v) < du(u,v). Let
G be a family of graphs, and let o > 1. A stochastic a-
embedding of a graph G into G is a probability distribution
over graphs H € G that dominate G, such that for any
u,v € V(G),

E[du(u,v)] < a-da(u,v).

For graph families F, G we write F ~5 G if every graph
G € F admits a stochastic a-embedding into G. A detailed
exposition of results on metric embeddings can be found in
[14], and [10].

2. RANDOM PLANARIZATION

‘We now show that every metric graph of orientable or non-
orientable genus g embeds into a distribution over planar
graph metrics with distortion at most O(g?).

!The Euler characteristic we refer to exclusively in this pa-
per is the value |E| — |V] + 1.

2.1 Thepedinglemma

In this section, we review the Peeling Lemma from [13].
Let G = (V, E) be a metric graph, and consider any subset
A C V. Let G[A] denote the subgraph of G induced by A,
and let dgpa) denote the induced shortest-path metric on A.
The dilation of A in G is

. daay (@, y)
dilg(A) = max ————=.
a(4) ac;éyeXA da(z,y)
Since dgiaj(z,y) 2> da(x,y) for all z,y € A, dilg(A) > 1.
We now recall the following definition.

DEFINITION 1 (LIPSCHITZ RANDOM PARTITION). For a
partition P of a set X, we write P : X — 2% to denote the
map which sends = to the set P(x) € P which contains x. A
random partition P of a finite metric space X is A-bounded
if

Pr[VC € P,diam(C) < A] = 1.

A A-bounded random partition P is B-Lipschitz if, for every
z,y € X,
+ P(y) < p2EY

For a metric space (X,d), we write B(x q) for the infi-
mal (3 such that X admits a A-bounded (-Lipschitz random
partition for every A > 0, and we refer to §(x,q) as the
decomposability modulus of X .

The results of Rao [16] and Klein, Plotkin, and Rao [12]
yield the following for the special case of bounded-genus met-
rics. (The stated quantitative dependence is due to [8].)

Pr[P(x)

THEOREM 1 (KPR DECOMPOSITION). IfG = (V, E) is
a metric graph of orientable or non-orientable genus g > 0,
then Bv,qq) = O(g + 1).

The dilation and modulus is used in the statement of the
Peeling Lemma. We use G £ H to denote the fact that
G admits a stochastic D-embedding into the family {H}
(consisting only of the single graph H).

LEMMA 1 (PEELING LEMMA, [13]). Let G = (V, E) be
a metric graph, and A C V an arbitrary subset of vertices.
Let G' = (V, E") be the metric graph with E' = E\ E(G[A)]),
and let 3 = ﬁ(v,dc,) be the corresponding modulus of decom-
posability. Then G 2 H, where D = O(B - dilg(A)), and H
is a 1-sum of isometric copies of the metric graphs G[A] and

{evyau@a}
has distortion at most dilg(A) for pairs z,y € A.

. Furthermore, the embedding always

2.2 Low-dilation planarizing sets

In light of the Peeling Lemma, given a graph of bounded
genus, we would like to find a low-dilation set A whose re-
moval leaves behind planar components. In section 2.3, we
will deal with the fact that the G[A] might not be planar. In
everything that follows, S will denote some compact surface
of bounded (orientable or non-orientable) genus.

DEFINITION 2 (CUT GRAPH [6]). Let G be a graph em-
bedded in' S. Then, a subgraph H of G is called a cut graph
if cutting S along the image of H results in a space homeo-
morphic to the disk.



DEFINITION 3 (ONE-SIDED WALK). Let D be the disk ob-
tained by a cut graph. FEvery edge of H appears twice in the
boundary of D. Let x and y be two unique vertices on the
boundary of D. Let R and R’ be the paths bounding D be-
tween x and y. An x-to-y walk X is called one-sided if for
every edge e of X, e is in R and e’s copy, €’ is in R’.

LEMMA 2. For any cut graph H and any two vertices x,y
of H, there is a one-sided walk from x to y in H.

ProOOF. Let R and R’ be the x-to-y boundaries of the
disk upon cutting the surface along H. Let C' be the set of
edges both of whose copies are in R. Let A be the subgraph
of H containing all the edges in R. A contains an z-to-y
path. Let B be the subgraph of H containing all the edges
in R\ C. We prove B contains an z-to-y path.

Let e be any edge in C and let €’ be its copy. Removing
e and €’ from R is equivalent to glueing the disk along e
and €', creating a punctured surface. Since edges of R’ are
never glued together, they will remain on the boundary of a
common puncture. Let S be the boundary of this puncture
after glueing all the edges of C together. Since R’ is an z-to-
y walk, S\ R is an z-to-y walk. All the edges in S\ R’ are
in R and their copies are in R’ by construction. Therefore
S\ R is a one-sided walk. []

First, we bound the dilation of certain cut graphs.

LEMMA 3. Let G be a graph embedded in'S. If H is a cut
graph of G of minimum total length and h is the number of
vertices of degree at least 8 in H, then

dile(V(H)) < h+2.

PROOF. Assume for the sake of contradiction that there
exist x,y € V(H), with

dr(z,y) > (b +2) de(z,y),

and pick z, y so that da(z, y) is minimized among such pairs.
Let @ be a shortest path between x and y in G. Observe
that by the choice of z,y, the path @ intersects H only at
x and y. Let D be the disk obtained after cutting S along
H. Since QN H = {z,y}, it follows that the interior of Q is
contained in the interior of D (Figure 1(a)).

Let R, R’ be the paths in D between the end-points of Q,
obtained by traversing clockwise the boundary of D start-
ing from x, and y respectively (Figure 1(a)). Let S be the
one-sided walk that is contained in R, as guaranteed by
Lemma 2. Let J be any simple z-to-y path contained in
S. We have

len(J) > du(x,y) > (h+2)da(z,y) = (h+2)len(Q) (1)

Let U be the set of vertices of H of degree at least 3.
Since J is a simple path, it visits each vertex in U at most
once. It follows that the path J consists of at most k£ <
h+ 1 paths Pi,..., P, in H. Since J is a one-sided path,
exactly one copy of P; appears in R, for each ¢ € [k]. Let
j = argmax, ¢ len(F;). By (1), we have

len(P;) >

Since P; has exactly one copy in each of R, and R/, it follows
that by cutting D along @ and gluing back along P; we
end up with a space homeomorphic to a disk (Figure 1(b)).
Therefore, the graph H', obtained from H by removing P;

R R

Yy
(a) The disk S\ H with R,
R’ on its boundary.

P—>

Y
(b) Cutting along @ and glueing along P;.

Figure 1: Building a smaller cut graph.

and by adding @, is a cut graph. By (2), H' has smaller
total length than H, contradicting the minimality of H, and
concluding the proof. [l

Now we state a result of [6].

THEOREM 2 (MINIMUM-LENGTH CUT GRAPH, [6]). Let G
be a graph embedded on a surface S of orientable or non-
orientable genus g > 1. Then every minimal-length cut
graph H in G has at most 4g — 2 vertices of degree at least 3.
Moreover, H is the subdivision of some graph with at most
4g — 2 vertices and at most 6g — 3 edges.

2.3 Applyingthe Pegling Lemma
Given Lemma 3 and Theorem 2, we are in position to

applying the Peeling Lemma, except that the cut graph H
of Theorem 2 might not itself be planar.

THEOREM 3. Let G be any metric graph of orientable or
non-orientable genus g > 1. Then G admits a stochastic
O(g2)-embedding into a distribution over planar graph met-
TiCS.

PrROOF. Let G be embedded into a surface S of orientable
or non-orientable genus g > 1. Let C be the cut graph given
by Theorem 2, which has at most 4g — 2 vertices of degree
at least 3. Applying Lemma 3, we have

dile(V(C)) < 4g. (3)

Since cutting S along C gives a space homeomorphic to a
disk, it follows that G'\ C is planar. G \ C might be discon-
nected, but this does not affect the argument. See Figure
2(a).

Assume, without loss of generality, that the minimum dis-
tance in G is 1. (Since G is finite, the distances can always
be rescaled to satisfy this constraint.) Let J be the graph



obtained from G as follows. For every edge {u,v} € E(G),
with u € V(C), and v ¢ V(C), we introduce a new vertex
z, and we replace {u,v} by a path u-z-v, with ds(z,v) = %,
and dj(u,z) = da(u,v) — 3. Let Z be the set of all these
new vertices, and let K = J[V(C)U Z], i.e. K is the sub-
graph obtained from C' by adding all the new vertices in Z,
and all the edges between Z and V(C). Observe that for

any x,y € V(G),

ds(z,y) = da(z,y).

Therefore G is an isometric subgraph of J. For any z,y €
V(K), let 2,y be the nearest neighbors of x and y in V(C),
respectively. Since the minimum distance in J is at least =,
we have

1
2

dx (¢’ y') + dx (z,2") + dx (y,y')
L+de(2',y')

1+4gdc(z’,y") by Equation (3)
1+4gds(',y)

1+4g (ds(z,y) + ds(z,2") + ds(y,y))
1+4g9+4gds(x,y)

(49 +2(49 + 1))ds (z,y)

14gd;(x,y)

dK(xvy)
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Therefore,
dily(V(K)) < 14g. (4)

Since G is a graph of genus g > 0, it follows that the modulus
of decomposability of J \ K is

BJ\K) = B(G\C) = 0(g) ()

by Theorem 1.

Thus, by the Peeling Lemma and by (4) and (5), we ob-
tain that J can be embedded into a distribution F over
graphs obtained by 1-sums of K with copies of {J[V(J) \
V(K) U {a}]}acv(x), with distortion at most O(8(J \ K) -
dil;(V(K))) = O(g?). Observe that J\ K = G\ C, and thus
J\ K is a planar graph. Moreover, for any a € V(K), there
is at most one edge between a and J\ K, and thus the graph
JIV(J)\ V(K) U {a}] is planar. In other words, any graph
in the support of F is obtained by 1-sums between K and
several planar graphs.

It remains to planarize K. We observe that for pairs x,y €
K, we have

dek)(z,y) < dilg(V(K)) da(z,y) = O(g) da(z,y),

by the final statement of the Peeling Lemma. We embed K
into a random tree with distortion O(log g), yielding an em-
bedding of GG into planar graphs with total distortion at most
O(g®) (in fact, pairs in K are stretched by only O(glog g)
in expectation).

By Theorem 2, the graph C is the subdivision of a graph
C’ with at most 4g — 2 vertices and at most 6g — 3 edges.
Recall that for a graph I' = (V, E), its Euler characteristic
is defined to be x(I') = |E(I")| — |[V(I")] + 1. Clearly, the
FEuler characteristic of a graph does not change by taking
subdivisions, so we have

X(C) =x(C") <|E(C)| = [V(C)[+1 <6g.  (6)

Combining the stochastic embedding of arbitrary graphs
into trees from [7], with the stochastic embedding of graphs

with small Euler characteristic into trees from [9], it follows
that every graph I' embeds into a distribution over dominat-
ing trees with distortion at most O(log x(I')). Therefore by
(6) we obtain that C' can be embedded into a distribution D
over dominating trees with distortion O(logg). Let T be a
random tree sampled from this distribution. Let 7" be the
graph obtained from K by replacing the isometric copy of
C in K by T. Observe that every vertex w € V(K) \ V(C)
is connected to a single vertex in V(C), and has no other
neighbors in K. Therefore, the graph T is a tree with the
same distortion as T. It follows K can also be embedded
into a distribution D’ over trees with distortion O(log g).
We are now ready to describe the embedding of G into
a random planar graph. We we embed G into a random
graph W chosen from F. Recall that W is obtained by
1-sums of a single copy of J with multiple planar graphs.
Next, we embed J into a random tree Q chosen from D',
and we replace the isometric copy of J in W by Q. Let
R be the resulting graph, illustrated in Figure 2(b). As we
already argued, this results in a stochastic O(g?)-embedding.
Moreover, the graph R is the 1-sum of a tree with planar
graphs. Since the class of planar graphs if closed under 1-
sums, it follows that R is planar, concluding the proof. [

3. LOWER BOUNDS

3.1 Thedilation of planar planarizing sets

Given the exponential gap on the optimal distortion of a
stochastic embedding of a genus-g graph into a distribution
over planar graphs (O(g?) vs. Q(logg)), it is natural to ask
whether the O(g?) bound on the distortion of our embedding
is tight. It is easy to construct examples of graphs of genus
g where a cut graph of minimum total length has dilation
Q(g). In this case, our embedding clearly has distortion at
least Q(g), e.g. on the vertices of the planarizing set.

We can in fact show the following lower bound: there are
graphs of genus g such that any planar planarizing set has
dilation Q(g). This implies that any algorithm that first
computes a planar planarizing set A, and then outputs a
stochastic embedding of 1-sums of A with G \ A using the
Peeling Lemma, has distortion at least Q(g).

THEOREM 4. For any g > 0, and for any n > 0, there
exists an n-verter graph G of genus g, such that for any
planar subgraph H of G, and G \ H is planar, we have that
the dilation of H is at least Q(g).

PROOF. Let S be a surface obtained by K5 after replacing
each vertex by a 3-dimensional sphere of radius 1, and each
edge by a cylinder of length n, and radius 1. Let also S’
be the surface obtained after attaching g — 1 handles that
are uniformly spread along S (Figure 3). The diameter of
each handle is 1. Clearly, the genus of S’ is g. Observe
that the minimum distance between any two such handles
is ©(n/g). It is easy to see that we can triangulate S’ using
triangles of edge-length ©(1), such that the set of vertices
of the triangulation is a ©(1)-net of S’ of size n.

Let now H be a planar subgraph of G, such that G\ H is
also planar. Since G\ H is planar, it follows that H contains
at least one vertex in each handle that we added in S. Let J
be the unweighted graph obtained after replacing each edge
of a K5 by a path of length —Z-. Tt follows that we can embed

100
J into G with distortion ©(1), such that the image of V' (J)



(a) The graph G with with the planarizing set C, and the graph G \ C.

(b) The 1-sum of K with copies of J\ K, and the resulting graph obtained after replacing K with a tree.

Figure 2: Computing the stochastic embedding.

Figure 3: Tori on a surface corresponding to Ks.

is contained in V(H). However, any embedding of J into
a planar graph must have distortion Q(g). This follows for
example by Lemma 1 of [5]. Therefore, the dilation of H is
Q(g). O

3.2 Lower boundsfor randomly planarizing a
graph

We now prove the following lower bound.

THEOREM 5. For every g > 1, there exists a metric graph
G = (V, E) of orientable genus O(g) such that if G admits a
stochastic D-embedding into a distribution over planar graph
metrics, then D = Q(log g).

PROOF SKETCH. It is known (and easy to check) that if
a metric space (X, d) admits a stochastic D-embedding into
a family ) of metric spaces, then the modulus of decom-
posability satisfies Bx q) < D - SUP(y, ey By,ary. It Y is
the family of planar graph metrics, then by Theorem 1, the
latter quantity is O(1), thus 3(x 4y = O(D). On the other
hand, there are n-point metric spaces (e.g. the shortest-path
metric on a constant-degree expander graph) which have
Bix,a) = Qlogn). Combining this with the fact that every
n-point metric space can be represented as the shortest-path
metric of a graph with genus at most O(n2) yields the de-
sired lower bound. [

4. OPEN PROBLEMS

The most immediate problem left open by this work is
closing the gap between the O(g?) upper bound, and the
Q(log g) lower bound on the distortion.



Moreover, our embedding yields an algorithm with runnning

time n®@. All the steps of the algorithm can be per-
formed in time n°® ~go(1), except for the computation
of the minimum-length cut graph, which is NP-complete,
and for which the best-known algorithm has running time
nCw [6]. It remains an interesting open question whether
the running time of our algorithm can be improved. We re-
mark that Erickson and Har-Peled [6] also give an algorithm
for computing approximate cut graphs, with running time
O(g®nlogn). These graphs however can have unbounded
(in terms of g) dilation, so they don’t seem to be applicable
in our setting.

Another interesting open problem is whether there exist
constant-distortion stochastic embeddings of bounded-genus
graphs into planar subgraphs.
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