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Abstract distortion embeddings provide a way to simplify the data,

We consider the problem of computing the smallest pc\g\g:chout losing too much information.

sible distortion for embedding of a givenpoint metric . Herde we focus on _embeddmg_s of finite met_”c s_anes
space intoR?, whered is fixed (and small). Ford — 1 into R¢ with the Euclidean metrid.||, whered is afixed

it was known that approximating the minimum distortioweger' More preusely, we ma_lnly F:onsuder the glgonth-
with a factor better than roughly!/12 is NP-hard. From ™° problem of computing or estimatirg. (X) for a given

this result we derive inapproximability with factor roughl n-pg_lntt metrllt_: sr:ac&i. Ford IS 3, ﬂ}!s _E)robletm has an im-
n1/(224-10) for every fixed! > 2, by a conceptually very Tediate application to visualizing finite metric spaces.
simple reduction. However, the proof of correctness in- 't IS known that everyn-point gr/ldetrlc;Qpacég embeds
volves a nontrivial result in geometric topology (whose-cuf? R” with distortion at mosO(n*'“log 271?1 [20;'/2-”‘9
rent proof is based on ideas due to Jus&isdla). proof is constructive and it yields a@(n**log™” n)-
For d > 3, we obtain a stronger inapproximability resul@PProximation algorithm forz« (X), and as far as we know,
by a different reduction: assumingNP, no polynomial- this is the best known approximation algorithm for this
time algorithm can distinguish between spaces embeddd®igolem- _ _
in R with constant distortion from spaces requiring dis- Hereé we will show that, assumingNP, there is no
tortion at leastn®/?, for a constantc > 0. The expo- polynomial-time algorithm with approximation ratiouch
' L ) 2/d ;
nentc/d has the correct order of magnitude, since eveRgtter tham?/¢. Namely, we will prove thatz. (X) cannot
n-point metric space can be embeddedgit with distor- be approximated with factor smaller thaf/¢ for a univer-
tion O(n?/?1og®? n) and such an embedding can be corsal constant (so at least the exponeatd has the correct
structed in polynomial time by random projection. order of magnitud_e as a function df. We now state the
For d = 2, we give an example of a metric space th4gSults more precisely.
requires a large distortion for embedding &?, while all Al dimensions hard ... Badoiu et al. [6] proved that it is
not too large subspaces of it embed almost isometricallyNP-hard to approximate the minimum distortion required
to embed a givenr-point metric spac& into R! with fac-
ntroduction tor better than roughly'/'? (see Theorem 3.1 below for a
gniy

recise formulation). Using their result as a black box, we

LetX = (X, px) andY = (Y, py) be metric spaces anngtain an analogous hardness result for embedding¢ in
let f: X — Y be an injective mapping (embedding). Thg,, every fixedd > 2:

distortionof f, denoted bylist(f), is the smallesD > 1
such that there exists > 0 (a scaling factor) for which
apx (x,y) < py (f(x), f(y)) < Dapx (z,y) forallz,y €
X. An embedding with distortion at mo# is also called
a D-embedding We letcy(X) denote the infimum of all
D > 1 such thatX admits aD-embedding intdy.

We_ W'” also use the symt_)om(_X) fo_r the aspect ratio Our derivation of this theorem from thiedimensional
of a finite metric spac&, which is defined as the largest

distance inX divided by the smallest nonzero distance iEeSUIt 'S conceptL_JaIIy very 5|mple: G_|ven arpoint metrldc
X spaceX, we consider & — 1)-dimensional spherg in R

Over the past few decades, metric embeddings have.o{aradIUSR much larger than the largest distanceinand

sulted in some of the most beautiful and powerful algorith- this 5 we pick an=-dense finite setV” for a sufficiently

mic teCh_niqueS’ with applications in many areas of com-14 setv in ametric spacéX, px ) is callede-dense if for eachk € X
puter science [19, 14]. In most of these results, lowhereisv € V with px (z,v) < e.

Theorem 1.1 For every fixedd > 2, and for every fixed
e > 0, itis NP-hard to approximate the minimum distortion
required for embedding of a givenpoint metric space into
R¢ within a factor of()(n!/(224-10)=¢),




Figure 1: A D-embedding of Y (a schematic illustration for d = 2 and | X | = 3).

smalle > 0. Then we form another metric spade = Our next result shows that fat > 3, even this kind of
(Y, py) as a suitable Cartesian productdfvith (V; ||.||). distinguishing good from bad is hard in general:

It is easy to show thatz.(Y) = O(cg:(X)). The harder
partis extracting aw(D)-embedding oK intoR! from an

; ; _ i . d. ; _
arp_ltrary glve_nD embedding: Y — R ; see Fig. 1 In with distortion at mosf,, and ones that require distortion
tuitively, the image of each copy df in Y has to “look c/d ) )
at,Jeastn®/¢, wherec > 0 is a universal constant anf),

like” a deformed sphere, and these “deformed Spher?ssaconstant depending ah

all have to be nested. Hence they are linearly ordered, '

and this provides an ordering of the pointsXfin a se-  Before proving this result, we first establish a weaker but

quence, sayasi,as,...,a,). Then we define an embedsimpler one in Section 5. The tools developed in this sim-

ding f: X — R! so thatf(a;) < f(az) < --- < f(an), pler proof also appear in the proof of Theorem 1.2 in Sec-

and the difference (a;+1) — f(a;) is the distance of thetion 6.

(i + 1)st “deformed sphere” from thih one. The techniques used in the proof of Theorem 1.2 do not
The claim about the nesting of the “deformed spheresgem to be applicable for the case of embeddingliitor

may seem intuitively obvious, but apparently it is not ef®?. So ford = 1 ord = 2, it is still possible that there

tirely easy to prove, and for establishing it rigorously wexists a polynomial-time algorithm that computes an em-

will apply some tools from analysis and from algebraisedding of a given metric spadginto R? with distortion

topology (Section 2); part of the current proof is due tat mostcg. (X)°M.

Vaisala [26]. This result and some by-products of theppro

can be of independentinterest. Then we prove Theorem {id Menger-type condition for approximate embeddings

in Section 3 along the lines just indicated. into the plane.  While we cannot exclude the existence

3 and more dimensions harder? Theorem 1.1 shows ©f an efficient algorithm that distinguishes “good spaces

that for embeddability ifR¢ it is hard to distinguish bad from bad ones” for embeddings i*, we provide some

spaces from even much worse ones. However, for ap@wdence that obtaining such an algorithm may not be easy,

cations of low-distortion embeddings, one is usually mogfice there is no “local” characterization of good embed-

interested in efficiently distinguishing good spaces (ebélability.

dable with a constant distortion, say) from bad ones. First we recall a well-known lemma of Menger [21], as-
For example, Theorem 1.1 leaves open the possib"_ﬁ?rtln_gthat am-point metric spac& embedssometrically

of a polynomial-time algorithm that, given a metric spad8 R? if (and only if) every subspace of on at mostl + 3

X, constructs an embedding & into R¢ with distortion points so embeds. In contract to this, we have the following

bounded by a polynomial in the optimal distortiop (X). "esult:

Ford = 1, there are indeed partial results of this kind fofhegrem 1.3 Let e < (0,1) be given, let, be sufficiently
restricted classes of metrics, namely, for weighted tréfs brge, and letl /\/z < k < ¢\/zn, wherec is a sufficiently
and for unweighted graphs [8]. Thus, at least for thesesma)| constant. Then there exists ampoint metric space
two qlasses, gqod and bad em_beddabﬂnRFncan be dis- x whose embedding iR? requires distortior()(,/z n/k),
tinguished efficiently (althoughin a somewhat weak sensghjle everyk-point subspace can be embedded®with

2By aunweighted graplve mean a metric space whose point set is th%lsmmon atmost +e. (PI’OOf Omltted')

vertex set of a grapliy and whose metric is the shortest-path metricof P : :
(where each edge has length 1). Similarly, the metricwéahted treés We remark that similar questions have been studied for

the shortest-path metric of some tree, where the edges mayanaitrary ©mbeddings i’y by Arora et al. [1] and by Charikar et
nonnegative lengths. al. [9].

Theorem 1.2 For every fixed! > 3, it is NP-hard to dis-
tinguish betweem-point metric spaces that embed kf




For additional references and summary of work relatécdcomes almost for free and it completes the picture. The
to our results, as well as for complete proofs, we refer taveain ideas of the proof of (i) and (iii) as given below were
full version of this paper, which can be accessed on-line fatund by Vaisala [26] in an answer to a question of the first

http://theory.csail.mit.edu/ tasos/ author, and here they are used with his kind permission (we

hardness-full.pdf have independently found another proof, but since it was
much less elegant, we reproduce Vaisala’s).

2 Deformed spheres and nesting lemmas Here is the result we need for the proof of Theorem 1.1:

As was outlined in the introduction, in the proof of TheCoroIIaryZ.Z (Nestinglemma)Let § < L and let
orem 1.1 we will be confronted with the following settingﬁ’ faye o, fn: S91 — RY be continuous maés satisfying
We have a finite sdt’ in a(d—1)-dimensional spher§; for

the purposes of this section we may assume$hat 591 o |fi(z) — fi(y)|| > ||z —y| — o forall z,y € S4-1

is the unit sphere ifiR?. We assume that’ is e-dense in and alls,

S4-1 and we are given #-embedding;: V' — R?. By

re-scaling we may assume thais noncontracting and-  ® [[fi(z) — fi(z)[| < § foralli,j and allz € S,
Lipschitz. and

In order to employ topological reasoning about the image
of suchg, we extendg to a continuous mag: S—! —

R? by a suitable interpolation (a tool for doing this will be et/; denote the unbounded componerikéf, ;, and let
mentioned later in this Section. We can make sureghst ys define a relation< on [r] by settingi < j if U; C U,

still D-Lipschitz, but generally it won't be noncontractingThen< is a linear ordering onn]. (Proof omitted.)
and it can even fail to be injective.

However, g satisfies the following weaker version OTAI . . : . :
y - do1 _ emma on approximate inverse.The first main step in
noncontracting”: For alle,y € S~ we have||g(z) —

_ ~ o the proof of Theorem 2.1 is the next lemma, which says that
gﬁ\%)(l‘k'zseixL;nﬂa_séé \l;vglirv(\j)é = 2De (this is easy to f has an “approximate inverse” mappihghat extends to

The main goal of this section is to show that the imagsgme neighborhood at.

of suchg behaves, in a suitable sense, as an “approximgig,, 4 2.3 Let f, %, andé < L be as in Theorem 2.1())
. y y 1 . L]

sphere”. This is expressed in Theorgm 2.1 below. . and let2, denote the closed-neighborhood of in R<.
For the proof of Theorem 1.2 we will need a technical €%hen there is a continuous map); ., — S9! such that
tension of these results; namely, instead of images’of /

we need to deal with images of more general shapes,
long tubes and punctured spheres. Thisis donein Sectiolra

e ¥, NY; = () whenever # j, whereX; = f;(S91).

|h(f(z)) — x| < 86 forall z € S4~1, and (consequently)
'compositiorh f: 41 — S§9-1 is homotopié to the

htity mapidga—1.
Big holes and nested spheresFor a compact sk’ C R¢,
let us call a bounded component®f \ K aholeof K. In the proof we will use a basic result about Lipschitz
maps: the Kirszbraun theorem [17], which asserts that ev-
Theorem 2.1 ery Lipschitz mapping from a subset of a Hilbert spate

into a Hilbert spacd{, can be extended to a Lipschitz map

; ; ; 1 . qd—1 d
() (A big hole exists)Letd € [0, ), let f: S - R H; — H,, with the same Lipschitz constant.

be a continuous map that satisfigs(xz) — f(y)|| >

|lz—y||—dforall z,y € S, andlety := f(S9-1). Proof of Lemma 2.3. Letus pute := § andr := i. Let

ThenX has a hole containing a ball of radius. N C ¥ be ane-nett in ¥. We choose a mapping N —
- i J o §4=1 with fg = idy; in other words, for every € N we
(i) I_.etfl,fg :.S 1R belmaps satisfying the Cond"arbitrarily choose(y) € £~1(y).

tion as in (i) for som& < 7, and supposztf;at, MOre- e claim thaty is 2-Lipschitz. Indeed, ify,y’ € N are

over, || fi(z) — fa()]| < Zlfo_r all z € 5977, Then gistinct ande = g(y), 2’ = g(y), then the condition orf

some hole oE; := f;(S% ') intersects some hole Ofgivest || < f(x) = f@)|+d=ly—y| +6 <

A d—1 .
Do = (8. (1+06/e)ly—y'll = 2|y — ¢'|| sincelly — /|| > e.

(iii) (All holes but one are narrow)etd, f, andZ _be aS_in 3We recall that two continuous mapsg: X — Y of topological
(i), and let us assume that, moreovgis D-Lipschitz spaces araomotopicin symbolsf ~ g, if there exists a continuous map
for someD > 1. Then there is at most one hole®f F:X x [0,1] — Y such thatF'(x,0) = f(z) and F(z, 1) = g(z) for

. - allz € X.
containing a ball of radiusl DJ. 4We recall that a subs@f C M in a metric spacéM, pyr) is ane-net

S . . if every two points of N have distance greater tharand N is inclusion-
Part (i) is what we will need, part (') can be regarded @g:yimal with respect to this property; that is, every poinf\é is at most
a by-product of the proof, and part (jiii) we do not need butar from some point ofV.



Next, using the Kirszbraun theorem mentioned above A continuous mapf: X — Y of compact sets induces
we extendy to a2-Lipschitz mapg: Q, — R<¢. We check a group homomorphisnf*: ¢ 1(Y) — H4(X); we
that0 is not in the image ofj; indeed, if we hadj(y) = 0 should stress that* goes in opposite direction compared
for somey € ,., we could find a point € N at distance to f. For the composition of maps we then haye)* =
at mostr + ¢ fromy, hence|g(z) —g(y)|| <2(r+¢) <1 g*f* (the last two properties are usually expressed by say-
(usingr = %, e=0< %), butg(y) = 0 while ||g(z)|| = 1 ing that cohnomology is a contravariant functor). Moreover,
sinceg(z) = g(z) € S471. if f1,f2: X — Y are homotopic maps, theff = f3.

We can now define the desirédQ — S% ! asinthe The following lemma encapsulates what we will need
lemma, byh(y) = g(y)/II3(v)l- from the Alexander duality.

Givenz € S?!, we pickz € N at moste away
from f(x), and we calculatég(f(x)) — z|| < ||g(f(z)) — Lemma 2.4 (d—1)-dimensional cohomology and holes)
91+ llg(z) =zl < 2|z f(@)[|+|lz2— f(2)[[+6 < 3e+
6 = 44. Sincel|g(f(x)) — h(f(2))| = 1 - [g(f(z))| <

llz — g(f(x))|l, we obtain||h(f(z)) — z|| < 2||g(f(z)) — () Letd > 2, let X C Y be compact sets ifR?,

x|| < 86 as claimed.

For§ < 1, this implies thath(f(z)) # —x for all
xr € S9!, and consequently,f ~ idga-1 (this is a stan-
dard and easy fact in topology; if and h(f(x)) are not

let j: X — Y denote the inclusion map, and let
§* H¥1(Y) — H% '(X) be the induced homomor-
phism in cohomology. Then the number of holeX of
that contain at least one hole &f equals the rank of

antipodal, they are connected by a unique shortest arc, and the imagem j*.

the homotopy moves along this arc). The lemma is prove
Py g ) pD gi) Letd > 2, let X1, X5, Y be compact sets iR?,

X, CY, X, CY, letjy, 2 be the inclusion maps
and j7, 75 the induced homomorphisms in cohomol-
ogy. Suppose thdfer(j;) U Ker(j3) does not gen-
erate all of H?~(Y"). Then there is a hole df con-
tained both in a hole oX; and in a hole ofX5.

The Alexander duality. In the subsequent proof of Theo-
rem 2.1, we will use cohomology groups. We will not need
their definition, only few very simple properties, which we
will explicitly state, plus one slightly deeper result ogat
braic topology. These can be taken as purely formal rules, )
which we will apply in the proof. We considgr, — 1)- (Proof omitted.)
dimensional cohomology, since it is closely related to the
number of holes. Proof of Theorem 2.1. Let us consider the map as in
Each compact sek c R? is assigned théd — 1)- part (i), andQ2, andh as in Lemma 2.3. Let: ¥ — D14
dimensionaCech (or equivalently, Alexander—Spanier) catenote the inclusion map. The composed nigp =
homology group H?~!(X); for definiteness we considerh;j f: S?~! — S9=1 is homotopic to the identity, and so the
integer coefficients, although the coefficient ring doesrtduced magf*;*h*: H=1(S?1) — H4=1(S41)in co-
matter in our considerations. Thig?~!(X) is an Abelian homology is the identity as well. Sindg?~'(S¢~1) # 0,
group, and if it is finitely generated, then it is isomorplac tthe homomorphism*: Hd*1(91/4) — H1(¥) cannot
7! for an integed > 0, called therank of H¢~1(X). be zero. By Lemma 2.4(i) this means that there is a hole
A very rough intuition is that the elements Bf*~'(X) of ¥ that contains a hole o®, /4, and such a hole of
correspond to (equivalence classes(df}- 1)-dimensional contains a}I-baII.
“surfaces” insideX, with nonzero elements corresponding . A
to “surfaces” that “enclose” one or more of the holestaf N Part (i), let &2 be the 3-neighborhood szlidlelt
(This is really closer to the idea of homology, rather thah: =1 — ¢ be the inclusion map, and lég: @ — S~

cohomology, but hopefully it is not totally misleading foP€ as in Fhe proof of (i), i.e., V‘{ith_lfl N.idsd“',By the
our purposes.) assumptiort; C Q as well (with inclusion mags,), and

; - .
A special case of thAlexander dualitywhich we will /1 and f; are homotopic as maps’* — ©, since the

i i i d—1
state precisely in the proof of Lemma 2.4 below, tells gmentfs (z) f>(z) 'S contsmed wfqur everyz € 57
that the rank of7¢~'(X) equals the number of holes o 0 the homomorphism#'j; and f; j3 in cohomology are

X. For exampleS?—! encloses a single hole, and we ha quu_ail, 6}{1‘1 also nonzero, singgj;hy is the identity in
Hd—l(Sd—l) ~7 (S )
The kernels ofj; and j5 are both contained in

- ) 3k — k .k 1
5We needCech cohomology so that our considerations are valid evég?irfifl jl) - Ker(f2 J2 )’ a’?_d_ the_ latter is nOt_ all of
for X with various local pathologies. In our application of Theor2.1 H“~'(€2). Thus, Lemma 2.4(ii) implies that there is a hole
we can assume that the mappifigs “nice”, e.g., that its imag& is the  of ) contained both in a hole af; and in a hole of,, and

union of finitely many simplices, and then we could work wtile perhaps part (ii) is proved Proof of part (iii) is omitted 0O
more familiar singular or simplicial cohomology. ' ’




3 Hardness forR' implies hardness forR? Next, we extend eachy, to a D-Lipschitz map

7 - d si i ;
As was mentioned in the introduction, we derive Theiﬂ.s — R® using the Kirszbraun theorem (mentioned after

V = i
rem 1.1 from the result of Badoiu et al. [6] on inappro _el(lnmaZ.S). Letx, := gﬁ(S) belthellmage oza' lary 2.2
imability for embeddings int®!. By inspecting the full ow we want to use the nesting lemma (Corollary 2.2)

version of that paper (available on-line), one can check tﬁ% show that the, have tq be nested. More_precisely, we
their proof yields the following: want to check that by scaling both the domain and range of

eachg, by +, we obtain maps’~! — R? as in Corol-
Theorem 3.1 (Badoiu et al. [6]) Assuming P£ NP, there lary 2.2. This is done using the next two lemmas.

is no polynomial-time algorithm with the following thre
properties: (i) The input of the algorithm is am-point

metric spaceX with A(X) = O(n). (i) If X admits an
O(n*/12)-embedding int®", the algorithm answer¥ES. Lemma 3.4
(iii) If X is not embeddable iR' with distortion smaller
thanQ(n®/12-¢), the algorithm answerslO.

Temma 3.3 Forall 2,y € S we have|g, (z) — 7, ()| >
|z —y| — &. (Proof omitted.)

(i) Fora # b, the Euclidean distance &f, andX, is at
leastpx (a,b) — % and in particular,X, N X, = 0.

This theorem together with the next proposition impl)(ii) Foranya,b € X andz € S, we havelg, (z) —
Theorem 1.1 by a simple calculation. 3,(2)] < éD A ' e

Proposition 3.2 Let X = (X, px) be ann-point metric (Proof omitted.)
space, letl > 2 be a fixed integer, and ldD,,,.x > 1 be a
parameter (specifying the maximum distortions we wanti@oof of Proposition 3.2(ii). As was announced above,
consider). There exists a metric space= (Y, py), [Y| = we can now apply Corollary 2.2 to the maps with do-
O(nDE Y A(X)4=1), which can be constructed in timemain and range rescaled By (usingd = 3/CR <
polynomial inn, A(X), and Dy,ax (the implicit constants and2D,.A/R < 7). Letting U, denote the unbounded
depending om), with the following properties: component ofR? \ 3, we can number the points of as

) ) ai,...,a, SO thatfori < j we havelU,, D U,..

(i) If X can beD-embedded iiR' for someD > 1, then Fori=1,2,....n—1we define&ilas the (Euclidean)

¥ can be(1.1D)-embeddedlin R, distance of%,, from %,,.,, and we define a mapping

(i) Given aD-embedding of’ in R¢ for someD, 1 < f: X — RUby f(a;) = > 71 4;.
D < Dy, One can construct a.1D-embedding of ~ Assuming that the original mappinghas distortion at
X in R in polynomial time. mostD, we will prove thatf has distortion at most.1D.
First we show thaff contracts distances by a factor of at

The construction. We follow the sketch given after The-MOStL.1. Lemma 3.4(i) gives; > px (ai, ai+1) —2/C 2
orem 1.1. Let us assume that the smallest distanggign 2 (@i, ai+1)/1.1 (assumingC' large). The triangle in-
and the largest one i&. We letC' = C(d) be a sufficiently ©auality then shows thaf(a;) — f(a;)| = px(ai,a;)/1.1
large constant, we s@ := C'Dyax A, and we lets be the foralli, ;. o
(d—1)-dimensional sphere iR? centered ab of radiusR. Next, we want to bound the Lipschitz constantfofLet
We set: := =-—, and we choos¥ as ane-dense subsetS fix a_pqintvq € V and let us abbreviate; := g(a;, vo).
of S (thatis, each point of has distance at mosto some L€t us fixi < j and let us consider the line segment;.
point of V); as is well known, we can assume tiathas We note that whenevérlies between andj, the segment

sizeO((R/<)%') and is computable in time polynomial intiZ; iNtersectsy,, . This is becaus&,; C Ua,, while
RJe. Yo, NU,, = 0. Thus, foreactk, : < k < j, we can fix a

Then we letY = (Y,py) := X x,, V; that is, POINtyx € Ya, ONTT5, Whgreyi =T andy; = x; (we
we setY := X x V, and we define the metrigy by Note that; also depends onandy). Then

py((a, ’U), (a/a Ul)) = \/PX (a7 al)2 + ”U - UI||2' j—1 j—1
Z5k < Z lyra1 — yrll
k=1 k=1

) Checking part(i) of Proposition 3.2 is easy and we orqif(aj) — flas)|
IT.
i . d . ina-

For part (i), letg:Y — R be aD embeddl_ng, for = |z — z;]| < Dpy ((ai, vo), (a;,v0))
convenience, we assume that it is noncontractlngﬁnd
Lipschitz. For eaclh € X we consider the “slice” of,
i.e., the mapping,: V — R? given byg.(v) = g(a,v). "Another way of extending the, is to assume thal’” is a vertex set
of some fine enough triangulation 6%, and extend affinely on each
81f needed, we could replace1 by any other constant greater than simplex of the triangulation. In this way we have more conatoout the

with appropriate adjustments in other constants. Weluseso that we local properties of the image (which is piecewise linead}, Wwe need to
need not introduce an extra parameter. worry about the existence of a suitable triangulation.

= Dpx(a;,a;)




sinceg is D-Lipschitz. is path-connected, and I¢ft, fo, ..., fn.: S — R? be maps
It remains to show hovwf can be found frony in poly- such that:

nomial time. First we need to sort th&,. To compare ] ) )

%, andX;, we can compute a point with the minimump- ~ ® E@ch/fi is D-Lipschitz.

coordinate, say, of, U ¥}, and see if it lies inx, or ¥, e Eachf; restricted toV is noncontracting.

(here we can use a property which follows from the proof

of the Kirszbraun theorem, namely, that we may assumes We have|f;(v) — f;(v)| < %Hv” forallv € V and

7,(S) C conv(ge(V)), which implies that the smallest  all i, j.

point of X, lies in g,(V')). Then we can approximate the ) .

distance o, to ¥, by the distance of the finite sejs(V)  ® Settlng*Ei = fi(S) and ¥} = fi(S'\ P), we have

andg, (V); this causes a small additive error which can in- i 1%; = 0 foralli # j.

crease the distortion of only negligibly. This concludes

- LetU; denote the unbounded nR6f, 3;, and let
the proof of Proposition 3.2. ety denote the unbounded componeriof, 2, and le

us define a relatiorx on[n] by setting; < j if eitheri = j
orX* C U;. Then=<is a linear ordering orn|.

4 Punctured pseudospheres Moreover,< is independent of the behavior of tfigon
the punctures, in the following sense:fif, ..., f; are D-

For the stronger inapproximability result for dimensions
ger Inapprox LY TESY ! ! schitz mapping$ — R? such thatf;(z) = fi(x) for

and higher, Theorem 1.2, we will need a nesting prope%P dalli (i il ;
not only for images of dense sets in spheres, but also {x €5\ Pan *a i {in particular, 3, = fi(,S \P) =
images for dense sets in other shapes. £i(S\ P)), and X3 0 f;(S) = O forall i # j, then the

In this section we develop a version of the nesting lemrfi3ear ordering induced by th¢; is the same as:. (Proof

that covers all of our applications. The definitions are t&mitted.)

lored to these applications. In order to reduce the number of

parameters, we use the same bouaridr several indepen- A basic example. Since this proposition is rather tech-

dent small quantities; if we were aiming at tighter boundhécal, let us present a basic example of a setting in which

in the inapproximability results, we could fine-tune each #fwill be applied. LetC be a long cylinder inR? of a

these quantities independently. large radiusR, and letV be a set that is-dense in the
Let S C R9\ {0} be a set, and let > 0. We call a lateral surface ofC. With this V we make a construc-

setV C S e-angularly densén S if for everyz € S there tion similar to the one in the proof of Theorem 1.1 above.

existsv € V with ||z — v|| < gv]. We setY = [n] x V, and we define a metric ol by
We call a setP C R? e-angularly small with respect py ((i,v), (i',v")) = |lv — v'[| + s, whered;;: is the Kro-

to a setV’ c R?\ {0} if there is a choice of a radiusnecker delta (equal tofor i = i’ and tol otherwise).

r, > 0 for everyv € V such thatP C (J, .y B(v,7y) We assume < 1 < R, and so we expectthatgf Y —

(whereB(z, ) denotes the ball of radiuscentered ar) R¢ is a D-embedding withD not too large, the images of

and)_ .y Hrv—v” < ¢ (this is a wasteful definition; aim-then copies ofl” in Y have to look like “nested cylinders”.

ing at more precise quantitative results, we would tak€tg::V — R? be the slice ofy corresponding ta.

(ro/|v])** instead ofr, /||v||, for example). In order to speak of “inside and outside” of these im-
For our purposes'pseudosphe['s asetS ¢ RY home- ages, we letS to be the whole surface of the Cyllndéi',
omorphic to ans?~! such that including the top and the bottom, and we extend egch
to a D-Lipschitzg,: S — R?. Now the images of the lat-
e the hole ofS contains0, and eral surfacd. of the cylinder under thg; are disjoint (with

an appropriate setting of ¢, D), but we don’t have much
control over the images of the top and bottom. However,
if we defineP as a suitable neighborhood, of radius about
DR, of the top and bottom af’, then it can be checked that
A punctured pseudosphei® a pair (S, P), whereS is a g,;(S \ P) avoidsg, () fori # j. In this situation, ifC'is
pseudosphere anl C S, the “punctures” of the pseudo-sufficiently long, Proposition 4.1 allows us to concludettha
sphere, is a subset 6f which we will assume to be smallthe images of thg, are nested (in the sense defined in the
in a suitable sense. propaosition).

e thereis aretractions of R%\ {0} ontoS (i.e.,rg: R\
{0} — S'is a continuous map whose restriction §n
is the identity map).

Proposition 4.1 (Nesting lemma for punctured pseudo- 5 St ; ; h : :
ronger inapproximability for dimension
spheres) Letd > 2, let D > 1 and lete := 5, let g bp y

(S, P) be a punctured pseudosphereld, let V' C S be 3t awarm-up
anc-angularly dense set iy, let us assume tha C Sis In this section we present a simple reduction, which pro-
g-angularly small w.r.tV, thatP NV = ), and thatS \ P vides an inapproximability result weaker than Theorem 1.2:



in that theorem, we claim the hardness of distinguishinge We connect thgth andkth layers by a (discrete) path

betweenO(1)-embeddability anch°°"*t/4-embeddability, 5.5 Of lengthl. Namely, we set = |1/¢], we con-
while here we show hardness of distinguishing between sider a graph-theoretic path on vertiggsp1, ..., ps
nc-embeddability £ > 0 arbitrary but fixed) andcost/?- with edges of length /¢, and we glue this path t&,
embeddability. by identifyingpo with (4, v) andp; with (k,v) (while

We will use an algorithmic problem called BETWEEN-  p1,...,p:—1 are new points).

NESS, which is NP-complete according to Opatrny [24],ing made this modification for every triple dt we call
(the beautiful reduction of 3-SAT to this problem is alsg,, resulting metric spacé = (Y, py ).

reproduced in [10]). An instance of BETWEENNESS is a gy it s straightforward to check that for consistent in-

setT’ of triples of the form(i, j, k), i, 5,k € [n], and the stancesY embeds withO(n) distortion. Using Proposi-

problem is to decide whethét is consistenti.e., whether a4 1 it is not hard to show that for inconsistent insesic
there exists a linear orderingof [1] for whichi is between ., embedding ot incurs distortion at leasb. We omit
j andk for every(i, j, k) € T (thatis, eitherj < i < k or the details

k=i=3j).

It will be more convenient to reduce to NON-BET
WEENNESS, whose instance has the same form as for Proof of Theorem 1.2
BETWEENNESS but the meaning ¢f, j, k) is now % Herewe present a different reduction of NON-BETWEEN-
mustnot be betweerj andk”. Each constrainfi, j, k) in  NESS to approximate embeddabilityRf, in which con-
BETWEENNESS can be equivalently replaced by the tvstent instances yiel@(1)-embeddability. The main idea
constraintgj, i, k) and(k, i, j) in NON-BETWEENNESS, is similar to the previous reduction: the linear ordering in

and so NON-BETWEENNESS is NP-complete as well. NON-BETWEENNESS is encoded in nesting of suitable
. , . _ “discretized surfaces”. The source of f1én) distortion in

The reduction. Letd > 3 be fixed. Given an Instancey, o previous reduction was the nesting of all the surfaces at

T of NON-BETWEENNESS fom elements and a boundthe same time.

D for distortion, we construct a metric spate= (Y, py ),

. Here we will allow simultaneous nesting of only at most
with |Y| < (nD)°(4), such that: g y

3 surfaces at a time. The surfaces won't be simply spheres,
though, but rather each of them will resemble a network of
branching pipes. We begin with a simple graph-theoretic
lemma.

e If T'is consistent, thely is O(n)-embeddable ifR?.

e If T'is not consistent, thel is not D-embeddable in
R%. Lemma 6.1 For every natural numben there is a graph
G of size polynomial im and subgraph&s,,Ga,...,G,
SettingD = n for a large constant’, we get that it of (¢ such that (i) EachG;, as well as eaclG; N G;, is
iS NP'hard to dIStII’IQUISh betwe@(n)-embeddablllty and a connected Subgraph (6; (“) No vertex OfG be'ongs
n“-embeddability ofY (and the size of is of ordem“°“® {5 more than3 of the G;. (iii) For every unordered triple
for an absolute constadt). {i, 4, k}, there is avertex,;, € V(G;) NV (G;)NV (Gy).
We fix suitable parameters < 1 < R, with e suffi- (Proof omitted.)
ciently small andR sufficiently large in terms of, and D,
and we letS be a(d — 1)-dimensional sphere of radid& The construction. Letd > 3 be fixed. Given an instance
We letV be ane-dense set irf, and similar to the exam-T of NON-BETWEENNESS form elements and a param-
ple following Proposition 4.1, we sé&f := [n] x V and eterD representing maximum distortion, we first construct
oy, ((i,0), (7, 0") = ||lv — V|| + d:r. We will refer to the an initial metric spac&, that depends only on andD.
set{i} x V as theith layer. Next, we will modify (Ys, py, ) We choose parameters< 1 < Reqge K Ryert (POlY-
to obtainY; this modification reflects the structuredf nomially depending om and D, with the degree of the
We chooseT| distinct points or¥/, sufficiently far from polynomial independent of). We fix an embedding of
one another, corresponding to the triple§inWe will call the graphG as in Lemma 6.1 int@®<¢, where vertices are
these points thioci. represented by points and edges by straight segments. We
Let (i,j,k) € T and letv = v(; ;x) € V be the corre- assume that the minimum edge length is sufficiently large
sponding locus. We modify the metric spd@, py,) near compared taR,.,t, the maximum edge length is bounded
v as follows: by Ryt times a polynomial im, the minimum distance of
every two vertex-disjoint edges is much larger thane,
e We make a puncture of radidsin each of the layers and that the minimum angle of two edges sharing a vertex
except for theith, jth, andkth. That is, we remove is bounded below by an inverse polynomiahin
from Y} all points (¢, w) with ¢ ¢ {i,j,k} and|u — We now “fatten” the embedded: We replace each ver-
v]| < 1. texa € V(G) by a ball B, of radiusR,.,+ and each edge



by a cylinderC, of radiusR.qge. We choose an-dense set [6] M. Badoiu, J. Chuzhoy, P. Indyk, and A. Sidiropou-

V in the boundary of the resulting solid (the union of&l)
and allC,). We letV,, := VNoB, andV, := VNoC,, and

fori e [n]V; := (UeeE(Gi) VS)U(UaGV(Gi) Va),where

theG; are the subgraphs asin Lemma 6.1. The metric space

Yo = (Yo, py,) is given byYy = {(i,v) : i € [n],v € V;},
Py, ((i,0), (7/,0") = ||lv = v'|| + ;. Theith layer ofYy is
{i} x V.

Now for every triple(i, 5, k) € T, we choose a point €

Va,;.» NOt too close to any, and we connect the points

(j,v) and(k,v) by a discrete path of lengthwith spacing
e. (Since the vertices;;;, are indexed byinorderedriples,

[7]

while the triples inl" are ordered, we may need several such
paths for a single vertex.) Adding such paths for all triples

in T yields the metric spacg.
If T is consistent, it is easy to emb&din R¢ with dis-

(9]

tortion O(1). Rather than trying to formalize this, we refer

to Fig. 2 for a (misleadingly planar) sketch for= 4, with
T ={(3,1,2), (4,1,2), (4,1,3), (2,3,4), (1,3,4)} (for
n = 4, the graphG can be taken very simple, ag&,, with
eachG; a triangle).

(10]

To show thatD-embeddability implies consistency, we
again apply Proposition 4.1. An additional issue, compared

to the simpler reduction from the previous section, is sho

ing that the orderings of the layers at different vertices
consistent. In this extended abstract we omit the proof.
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