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Abstract

We consider the problem of computing the smallest pos-
sible distortion for embedding of a givenn-point metric
space intoR

d, whered is fixed (and small). Ford = 1,
it was known that approximating the minimum distortion
with a factor better than roughlyn1/12 is NP-hard. From
this result we derive inapproximability with factor roughly
n1/(22d−10) for every fixedd ≥ 2, by a conceptually very
simple reduction. However, the proof of correctness in-
volves a nontrivial result in geometric topology (whose cur-
rent proof is based on ideas due to Jussi Väisälä).

For d ≥ 3, we obtain a stronger inapproximability result
by a different reduction: assuming P6=NP, no polynomial-
time algorithm can distinguish between spaces embeddable
in R

d with constant distortion from spaces requiring dis-
tortion at leastnc/d, for a constantc > 0. The expo-
nentc/d has the correct order of magnitude, since every
n-point metric space can be embedded inR

d with distor-
tion O(n2/d log3/2 n) and such an embedding can be con-
structed in polynomial time by random projection.

For d = 2, we give an example of a metric space that
requires a large distortion for embedding inR2, while all
not too large subspaces of it embed almost isometrically.

1 Introduction

Let X = (X, ρX) andY = (Y, ρY ) be metric spaces and
let f : X → Y be an injective mapping (embedding). The
distortionof f , denoted bydist(f), is the smallestD ≥ 1
such that there existsα > 0 (a scaling factor) for which
αρX(x, y) ≤ ρY (f(x), f(y)) ≤ DαρX(x, y) for all x, y ∈
X . An embedding with distortion at mostD is also called
a D-embedding. We let cY(X) denote the infimum of all
D ≥ 1 such thatX admits aD-embedding intoY.

We will also use the symbol∆(X) for the aspect ratio
of a finite metric spaceX, which is defined as the largest
distance inX divided by the smallest nonzero distance in
X.

Over the past few decades, metric embeddings have re-
sulted in some of the most beautiful and powerful algorith-
mic techniques, with applications in many areas of com-
puter science [19, 14]. In most of these results, low-

distortion embeddings provide a way to simplify the data,
without losing too much information.

Here we focus on embeddings of finite metric spacesX

into R
d with the Euclidean metric‖.‖, whered is a fixed

integer. More precisely, we mainly consider the algorith-
mic problem of computing or estimatingcRd(X) for a given
n-point metric spaceX. Ford ≤ 3, this problem has an im-
mediate application to visualizing finite metric spaces.

It is known that everyn-point metric spaceX embeds
in R

d with distortion at mostO(n2/d log3/2 n) [20]. The
proof is constructive and it yields anO(n2/d log3/2 n)-
approximation algorithm forcRd(X), and as far as we know,
this is the best known approximation algorithm for this
problem.

Here we will show that, assuming P6=NP, there is no
polynomial-time algorithm with approximation ratiomuch
better thann2/d. Namely, we will prove thatcRd(X) cannot
be approximated with factor smaller thannc/d for a univer-
sal constantc (so at least the exponentc/d has the correct
order of magnitude as a function ofd). We now state the
results more precisely.

All dimensions hard . . . Bădoiu et al. [6] proved that it is
NP-hard to approximate the minimum distortion required
to embed a givenn-point metric spaceX into R

1 with fac-
tor better than roughlyn1/12 (see Theorem 3.1 below for a
precise formulation). Using their result as a black box, we
obtain an analogous hardness result for embeddings inR

d

for every fixedd ≥ 2:

Theorem 1.1 For every fixedd ≥ 2, and for every fixed
ε > 0, it is NP-hard to approximate the minimum distortion
required for embedding of a givenn-point metric space into
R

d within a factor ofΩ(n1/(22d−10)−ε).

Our derivation of this theorem from the1-dimensional
result is conceptually very simple: Given ann-point metric
spaceX, we consider a(d−1)-dimensional sphereS in R

d

of radiusR much larger than the largest distance inX, and
in this S we pick anε-dense1 finite setV for a sufficiently

1A setV in a metric space(X, ρX) is calledε-dense if for eachx ∈ X

there isv ∈ V with ρX(x, v) ≤ ε.
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Figure 1: A D-embedding of Y (a schematic illustration for d = 2 and |X | = 3).

small ε > 0. Then we form another metric spaceY =
(Y, ρY ) as a suitable Cartesian product ofX with (V, ‖.‖).

It is easy to show thatcRd(Y) = O(cR1 (X)). The harder
part is extracting anO(D)-embedding ofX intoR

1 from an
arbitrary givenD-embeddingg: Y → R

d; see Fig. 1. In-
tuitively, the image of each copy ofV in Y has to “look
like” a deformed sphere, and these “deformed spheres”
all have to be nested. Hence they are linearly ordered,
and this provides an ordering of the points ofX in a se-
quence, say(a1, a2, . . . , an). Then we define an embed-
ding f : X → R

1 so thatf(a1) < f(a2) < · · · < f(an),
and the differencef(ai+1) − f(ai) is the distance of the
(i + 1)st “deformed sphere” from theith one.

The claim about the nesting of the “deformed spheres”
may seem intuitively obvious, but apparently it is not en-
tirely easy to prove, and for establishing it rigorously we
will apply some tools from analysis and from algebraic
topology (Section 2); part of the current proof is due to
Väisälä [26]. This result and some by-products of the proof
can be of independent interest. Then we prove Theorem 1.1
in Section 3 along the lines just indicated.

. . . 3 and more dimensions harder? Theorem 1.1 shows
that for embeddability inRd it is hard to distinguish bad
spaces from even much worse ones. However, for appli-
cations of low-distortion embeddings, one is usually most
interested in efficiently distinguishing good spaces (embed-
dable with a constant distortion, say) from bad ones.

For example, Theorem 1.1 leaves open the possibility
of a polynomial-time algorithm that, given a metric space
X, constructs an embedding ofX into R

d with distortion
bounded by a polynomial in the optimal distortioncRd(X).
For d = 1, there are indeed partial results of this kind for
restricted classes of metrics, namely, for weighted trees [6]
and for unweighted graphs [8].2 Thus, at least for these
two classes, good and bad embeddability inR

1 can be dis-
tinguished efficiently (although in a somewhat weak sense).

2By aunweighted graphwe mean a metric space whose point set is the
vertex set of a graphG and whose metric is the shortest-path metric ofG

(where each edge has length 1). Similarly, the metric of aweighted treeis
the shortest-path metric of some tree, where the edges may have arbitrary
nonnegative lengths.

Our next result shows that ford ≥ 3, even this kind of
distinguishing good from bad is hard in general:

Theorem 1.2 For every fixedd ≥ 3, it is NP-hard to dis-
tinguish betweenn-point metric spaces that embed inRd

with distortion at mostD0, and ones that require distortion
at leastnc/d, wherec > 0 is a universal constant andD0

is a constant depending ond.

Before proving this result, we first establish a weaker but
simpler one in Section 5. The tools developed in this sim-
pler proof also appear in the proof of Theorem 1.2 in Sec-
tion 6.

The techniques used in the proof of Theorem 1.2 do not
seem to be applicable for the case of embedding intoR

1 or
R

2. So ford = 1 or d = 2, it is still possible that there
exists a polynomial-time algorithm that computes an em-
bedding of a given metric spaceX into R

d with distortion
at mostcRd(X)O(1).

No Menger-type condition for approximate embeddings
into the plane. While we cannot exclude the existence
of an efficient algorithm that distinguishes “good spaces
from bad ones” for embeddings inR2, we provide some
evidence that obtaining such an algorithm may not be easy,
since there is no “local” characterization of good embed-
dability.

First we recall a well-known lemma of Menger [21], as-
serting that ann-point metric spaceX embedsisometrically
in R

d if (and only if) every subspace ofX on at mostd + 3
points so embeds. In contract to this, we have the following
result:

Theorem 1.3 Let ε ∈ (0, 1) be given, letn be sufficiently
large, and let1/

√
ε ≤ k ≤ c

√
εn, wherec is a sufficiently

small constant. Then there exists ann-point metric space
X, whose embedding inR2 requires distortionΩ(

√
ε n/k),

while everyk-point subspace can be embedded inR
2 with

distortion at most1 + ε. (Proof omitted.)

We remark that similar questions have been studied for
embeddings inℓ1 by Arora et al. [1] and by Charikar et
al. [9].
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For additional references and summary of work related
to our results, as well as for complete proofs, we refer to a
full version of this paper, which can be accessed on-line at
http://theory.csail.mit.edu/˜tasos/
hardness-full.pdf

2 Deformed spheres and nesting lemmas
As was outlined in the introduction, in the proof of The-
orem 1.1 we will be confronted with the following setting:
We have a finite setV in a(d−1)-dimensional sphereS; for
the purposes of this section we may assume thatS = Sd−1

is the unit sphere inRd. We assume thatV is ε-dense in
Sd−1, and we are given aD-embeddingg: V → R

d. By
re-scaling we may assume thatg is noncontracting andD-
Lipschitz.

In order to employ topological reasoning about the image
of suchg, we extendg to a continuous mapg: Sd−1 →
R

d by a suitable interpolation (a tool for doing this will be
mentioned later in this Section. We can make sure thatg is
still D-Lipschitz, but generally it won’t be noncontracting,
and it can even fail to be injective.

However, g satisfies the following weaker version of
“noncontracting”: For allx, y ∈ Sd−1 we have‖g(x) −
g(y)‖ ≥ ‖x − y‖ − δ, whereδ = 2Dε (this is easy to
check; see Lemma 3.3 below).

The main goal of this section is to show that the image
of suchg behaves, in a suitable sense, as an “approximate
sphere”. This is expressed in Theorem 2.1 below.

For the proof of Theorem 1.2 we will need a technical ex-
tension of these results; namely, instead of images ofSd−1,
we need to deal with images of more general shapes, e.g.,
long tubes and punctured spheres. This is done in Section 4.

Big holes and nested spheres.For a compact setK ⊂ R
d,

let us call a bounded component ofR
d \ K a holeof K.

Theorem 2.1

(i) (A big hole exists)Let δ ∈ [0, 1
4 ), let f : Sd−1 → R

d

be a continuous map that satisfies‖f(x) − f(y)‖ ≥
‖x−y‖−δ for all x, y ∈ Sd−1, and letΣ := f(Sd−1).
ThenΣ has a hole containing a ball of radius14 .

(ii) Letf1, f2 : Sd−1 → R
d be maps satisfying the condi-

tion as in (i) for someδ < 1
4 , and suppose that, more-

over,‖f1(x) − f2(x)‖ < 1
4 for all x ∈ Sd−1. Then

some hole ofΣ1 := f1(S
d−1) intersects some hole of

Σ2 := f2(S
d−1).

(iii) (All holes but one are narrow)Letδ, f , andΣ be as in
(i), and let us assume that, moreover,f is D-Lipschitz
for someD ≥ 1. Then there is at most one hole ofΣ
containing a ball of radius4Dδ.

Part (ii) is what we will need, part (i) can be regarded as
a by-product of the proof, and part (iii) we do not need but

it comes almost for free and it completes the picture. The
main ideas of the proof of (i) and (iii) as given below were
found by Väisälä [26] in an answer to a question of the first
author, and here they are used with his kind permission (we
have independently found another proof, but since it was
much less elegant, we reproduce Väisälä’s).

Here is the result we need for the proof of Theorem 1.1:

Corollary 2.2 (Nesting lemma) Let δ < 1
4 and let

f1, f2, . . . , fn: Sd−1 → R
d be continuous maps satisfying

• ‖fi(x) − fi(y)‖ ≥ ‖x − y‖ − δ for all x, y ∈ Sd−1

and all i,

• ‖fi(x) − fj(x)‖ ≤ 1
4 for all i, j and all x ∈ Sd−1,

and

• Σi ∩ Σj = ∅ wheneveri 6= j, whereΣi = fi(S
d−1).

LetUi denote the unbounded component ofR
d \Σi, and let

us define a relation� on [n] by settingi � j if Uj ⊆ Ui.
Then� is a linear ordering on[n]. (Proof omitted.)

A lemma on approximate inverse.The first main step in
the proof of Theorem 2.1 is the next lemma, which says that
f has an “approximate inverse” mappingh that extends to
some neighborhood ofΣ.

Lemma 2.3 Let f , Σ, andδ < 1
4 be as in Theorem 2.1(i),

and letΩr denote the closedr-neighborhood ofΣ in R
d.

Then there is a continuous maph: Ω1/4 → Sd−1 such that
‖h(f(x)) − x‖ ≤ 8δ for all x ∈ Sd−1, and (consequently)
the compositionhf : Sd−1 → Sd−1 is homotopic3 to the
identity mapidSd−1 .

In the proof we will use a basic result about Lipschitz
maps: the Kirszbraun theorem [17], which asserts that ev-
ery Lipschitz mapping from a subset of a Hilbert spaceH1

into a Hilbert spaceH2 can be extended to a Lipschitz map
H1 → H2, with the same Lipschitz constant.

Proof of Lemma 2.3. Let us putε := δ andr := 1
4 . Let

N ⊂ Σ be anε-net4 in Σ. We choose a mappingg: N →
Sd−1 with fg = idN ; in other words, for everyy ∈ N we
arbitrarily chooseg(y) ∈ f−1(y).

We claim thatg is 2-Lipschitz. Indeed, ify, y′ ∈ N are
distinct andx = g(y), x′ = g(y′), then the condition onf
gives‖x − x′‖ ≤ ‖f(x) − f(x′)‖ + δ = ‖y − y′‖ + δ <
(1 + δ/ε)‖y − y′‖ = 2‖y − y′‖ since‖y − y′‖ > ε.

3We recall that two continuous mapsf, g:X → Y of topological
spaces arehomotopic, in symbolsf ∼ g, if there exists a continuous map
F :X × [0, 1] → Y such thatF (x, 0) = f(x) andF (x, 1) = g(x) for
all x ∈ X.

4We recall that a subsetN ⊆ M in a metric space(M, ρM ) is anε-net
if every two points ofN have distance greater thanε andN is inclusion-
maximal with respect to this property; that is, every point of M is at most
ε far from some point ofN .

3



Next, using the Kirszbraun theorem mentioned above,
we extendg to a2-Lipschitz mapg: Ωr → R

d. We check
that0 is not in the image ofg; indeed, if we hadg(y) = 0
for somey ∈ Ωr, we could find a pointz ∈ N at distance
at mostr + ε from y, hence‖g(z)− g(y)‖ ≤ 2(r + ε) < 1
(usingr = 1

4 , ε = δ < 1
4 ), butg(y) = 0 while ‖g(z)‖ = 1

sinceg(z) = g(z) ∈ Sd−1.
We can now define the desiredh: Ω → Sd−1 as in the

lemma, byh(y) = g(y)/‖g(y)‖.
Given x ∈ Sd−1, we pick z ∈ N at mostε away

from f(x), and we calculate‖g(f(x))− x‖ ≤ ‖g(f(x)) −
g(z)‖+‖g(z)−x‖ ≤ 2‖z−f(x)‖+‖z−f(x)‖+δ ≤ 3ε+
δ = 4δ. Since‖g(f(x)) − h(f(x))‖ = 1 − ‖g(f(x))‖ ≤
‖x − g(f(x))‖, we obtain‖h(f(x)) − x‖ ≤ 2‖g(f(x)) −
x‖ ≤ 8δ as claimed.

For δ < 1
4 , this implies thath(f(x)) 6= −x for all

x ∈ Sd−1, and consequently,hf ∼ idSd−1 (this is a stan-
dard and easy fact in topology; ifx andh(f(x)) are not
antipodal, they are connected by a unique shortest arc, and
the homotopy moves along this arc). The lemma is proved.

2

The Alexander duality. In the subsequent proof of Theo-
rem 2.1, we will use cohomology groups. We will not need
their definition, only few very simple properties, which we
will explicitly state, plus one slightly deeper result of alge-
braic topology. These can be taken as purely formal rules,
which we will apply in the proof. We consider(d − 1)-
dimensional cohomology, since it is closely related to the
number of holes.

Each compact setX ⊂ R
d is assigned the(d − 1)-

dimensionaľCech (or equivalently, Alexander–Spanier) co-
homology group5 Ȟd−1(X); for definiteness we consider
integer coefficients, although the coefficient ring doesn’t
matter in our considerations. ThišHd−1(X) is an Abelian
group, and if it is finitely generated, then it is isomorphic to
Z

b for an integerb ≥ 0, called therank of Ȟd−1(X).
A very rough intuition is that the elements of̌Hd−1(X)

correspond to (equivalence classes of)(d− 1)-dimensional
“surfaces” insideX , with nonzero elements corresponding
to “surfaces” that “enclose” one or more of the holes ofX .
(This is really closer to the idea of homology, rather than
cohomology, but hopefully it is not totally misleading for
our purposes.)

A special case of theAlexander duality, which we will
state precisely in the proof of Lemma 2.4 below, tells us
that the rank ofȞd−1(X) equals the number of holes of
X . For example,Sd−1 encloses a single hole, and we have
Ȟd−1(Sd−1) ∼= Z.

5We needČech cohomology so that our considerations are valid even
for X with various local pathologies. In our application of Theorem 2.1
we can assume that the mappingf is “nice”, e.g., that its imageΣ is the
union of finitely many simplices, and then we could work with the perhaps
more familiar singular or simplicial cohomology.

A continuous mapf : X → Y of compact sets induces
a group homomorphismf∗: Ȟd−1(Y ) → Ȟd−1(X); we
should stress thatf∗ goes in opposite direction compared
to f . For the composition of maps we then have(fg)∗ =
g∗f∗ (the last two properties are usually expressed by say-
ing that cohomology is a contravariant functor). Moreover,
if f1, f2: X → Y are homotopic maps, thenf∗

1 = f∗
2 .

The following lemma encapsulates what we will need
from the Alexander duality.

Lemma 2.4 ((d−1)-dimensional cohomology and holes)

(i) Let d ≥ 2, let X ⊆ Y be compact sets inRd,
let j: X → Y denote the inclusion map, and let
j∗: Ȟd−1(Y ) → Ȟd−1(X) be the induced homomor-
phism in cohomology. Then the number of holes ofX
that contain at least one hole ofY equals the rank of
the imageIm j∗.

(ii) Let d ≥ 2, let X1, X2, Y be compact sets inRd,
X1 ⊆ Y , X2 ⊆ Y , let j1, j2 be the inclusion maps
and j∗1 , j∗2 the induced homomorphisms in cohomol-
ogy. Suppose thatKer(j∗1 ) ∪ Ker(j∗2 ) does not gen-
erate all ofȞd−1(Y ). Then there is a hole ofY con-
tained both in a hole ofX1 and in a hole ofX2.

(Proof omitted.)

Proof of Theorem 2.1. Let us consider the mapf as in
part (i), andΩr andh as in Lemma 2.3. Letj: Σ → Ω1/4

denote the inclusion map. The composed maphf =
hjf : Sd−1 → Sd−1 is homotopic to the identity, and so the
induced mapf∗j∗h∗: Ȟd−1(Sd−1) → Ȟd−1(Sd−1) in co-
homology is the identity as well. SincěHd−1(Sd−1) 6= 0,
the homomorphismj∗: Ȟd−1(Ω1/4) → Ȟd−1(Σ) cannot
be zero. By Lemma 2.4(i) this means that there is a hole
of Σ that contains a hole ofΩ1/4, and such a hole ofΣ
contains a1

4 -ball.

In part (ii), let Ω be the 1
4 -neighborhood ofΣ1, let

j1: Σ1 → Ω be the inclusion map, and leth1: Ω → Sd−1

be as in the proof of (i), i.e., withh1f1 ∼ idSd−1 . By the
assumptionΣ2 ⊆ Ω as well (with inclusion mapj2), and
f1 andf2 are homotopic as mapsSd−1 → Ω, since the
segmentf1(x)f2(x) is contained inΩ for everyx ∈ Sd−1.
So the homomorphismsf∗

1 j∗1 andf∗
2 j∗2 in cohomology are

equal, and also nonzero, sincef∗
1 j∗1h∗

1 is the identity in
Ȟd−1(Sd−1).

The kernels of j∗1 and j∗2 are both contained in
Ker(f∗

1 j∗1 ) = Ker(f∗
2 j∗2 ), and the latter is not all of

Ȟd−1(Ω). Thus, Lemma 2.4(ii) implies that there is a hole
of Ω contained both in a hole ofΣ1 and in a hole ofΣ2, and
part (ii) is proved. Proof of part (iii) is omitted. 2
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3 Hardness forR1 implies hardness forRd

As was mentioned in the introduction, we derive Theo-
rem 1.1 from the result of Bădoiu et al. [6] on inapprox-
imability for embeddings intoR1. By inspecting the full
version of that paper (available on-line), one can check that
their proof yields the following:

Theorem 3.1 (B̆adoiu et al. [6]) Assuming P6= NP, there
is no polynomial-time algorithm with the following three
properties: (i) The input of the algorithm is ann-point
metric spaceX with ∆(X) = O(n). (ii) If X admits an
O(n4/12)-embedding intoR1, the algorithm answersYES.
(iii) If X is not embeddable inR1 with distortion smaller
thanΩ(n5/12−ε), the algorithm answersNO.

This theorem together with the next proposition imply
Theorem 1.1 by a simple calculation.

Proposition 3.2 Let X = (X, ρX) be ann-point metric
space, letd ≥ 2 be a fixed integer, and letDmax ≥ 1 be a
parameter (specifying the maximum distortions we want to
consider). There exists a metric spaceY = (Y, ρY ), |Y | =

O(nD
2(d−1)
max ∆(X)d−1), which can be constructed in time

polynomial inn, ∆(X), andDmax (the implicit constants
depending ond), with the following properties:

(i) If X can beD-embedded inR1 for someD ≥ 1, then
Y can be(1.1D)-embedded6 in R

d.

(ii) Given aD-embedding ofY in R
d for someD, 1 ≤

D ≤ Dmax, one can construct a1.1D-embedding of
X in R

1 in polynomial time.

The construction. We follow the sketch given after The-
orem 1.1. Let us assume that the smallest distance inX is 1
and the largest one is∆. We letC = C(d) be a sufficiently
large constant, we setR := CDmax∆, and we letS be the
(d−1)-dimensional sphere inRd centered at0 of radiusR.
We setε := 1

CDmax
, and we chooseV as anε-dense subset

of S (that is, each point ofS has distance at mostε to some
point of V ); as is well known, we can assume thatV has
sizeO((R/ε)d−1) and is computable in time polynomial in
R/ε.

Then we letY = (Y, ρY ) := X ×L2
V ; that is,

we setY := X × V , and we define the metricρY by
ρY ((a, v), (a′, v′)) =

√

ρX(a, a′)2 + ‖v − v′‖2.
Checking part(i) of Proposition 3.2 is easy and we omit

it.
For part (ii), let g: Y → R

d be aD-embedding; for
convenience, we assume that it is noncontracting andD-
Lipschitz. For eacha ∈ X we consider the “slice” ofg,
i.e., the mappingga: V → R

d given byga(v) = g(a, v).

6If needed, we could replace1.1 by any other constant greater than1,
with appropriate adjustments in other constants. We use1.1 so that we
need not introduce an extra parameter.

Next, we extend eachga to a D-Lipschitz map
ga: S → R

d using the Kirszbraun theorem (mentioned after
Lemma 2.3).7 Let Σa := ga(S) be the image ofga.

Now we want to use the nesting lemma (Corollary 2.2)
to show that theΣa have to be nested. More precisely, we
want to check that by scaling both the domain and range of
eachga by 1

R , we obtain mapsSd−1 → R
d as in Corol-

lary 2.2. This is done using the next two lemmas.

Lemma 3.3 For all x, y ∈ S we have‖ga(x) − ga(y)‖ ≥
‖x − y‖ − 3

C . (Proof omitted.)

Lemma 3.4

(i) For a 6= b, the Euclidean distance ofΣa andΣb is at
leastρX(a, b) − 2

C , and in particular,Σa ∩ Σb = ∅.

(ii) For any a, b ∈ X and x ∈ S, we have‖ga(x) −
gb(x)‖ ≤ 2Dmax∆.

(Proof omitted.)

Proof of Proposition 3.2(ii). As was announced above,
we can now apply Corollary 2.2 to the mapsga with do-
main and range rescaled by1R (using δ = 3/CR < 1

4
and2Dmax∆/R ≤ 1

4 ). Letting Ua denote the unbounded
component ofRd \ Σa, we can number the points ofX as
a1, . . . , an so that fori < j we haveUai

⊃ Uaj
.

For i = 1, 2, . . . , n − 1 we defineδi as the (Euclidean)
distance ofΣai

from Σai+1
, and we define a mapping

f : X → R
1 by f(ai) =

∑i−1
j=1 δj .

Assuming that the original mappingg has distortion at
mostD, we will prove thatf has distortion at most1.1D.
First we show thatf contracts distances by a factor of at
most1.1. Lemma 3.4(i) givesδi ≥ ρX(ai, ai+1) − 2/C ≥
ρX(ai, ai+1)/1.1 (assumingC large). The triangle in-
equality then shows that|f(ai)− f(aj)| ≥ ρX(ai, aj)/1.1
for all i, j.

Next, we want to bound the Lipschitz constant off . Let
us fix a pointv0 ∈ V and let us abbreviatexi := g(ai, v0).
Let us fix i < j and let us consider the line segmentxixj .
We note that wheneverk lies betweeni andj, the segment
xixj intersectsΣak

. This is becauseΣaj
⊂ Uak

, while
Σai

∩ Uak
= ∅. Thus, for eachk, i ≤ k ≤ j, we can fix a

point yk ∈ Σak
on xixj , whereyi = xi andyj = xj (we

note thatyk also depends oni andj). Then

|f(aj) − f(ai)| =

j−1
∑

k=i

δk ≤
j−1
∑

k=i

‖yk+1 − yk‖

= ‖xi − xj‖ ≤ DρY ((ai, v0), (aj , v0))

= DρX(ai, aj)

7Another way of extending thega is to assume thatV is a vertex set
of some fine enough triangulation ofSd−1, and extend affinely on each
simplex of the triangulation. In this way we have more control about the
local properties of the image (which is piecewise linear), but we need to
worry about the existence of a suitable triangulation.
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sinceg is D-Lipschitz.
It remains to show howf can be found fromg in poly-

nomial time. First we need to sort theΣa. To compare
Σa andΣb, we can compute a point with the minimumx1-
coordinate, say, ofΣa ∪ Σb and see if it lies inΣa or Σb

(here we can use a property which follows from the proof
of the Kirszbraun theorem, namely, that we may assume
ga(S) ⊆ conv(ga(V )), which implies that the smallest
point of Σa lies in ga(V )). Then we can approximate the
distance ofΣa to Σb by the distance of the finite setsga(V )
andgb(V ); this causes a small additive error which can in-
crease the distortion off only negligibly. This concludes
the proof of Proposition 3.2. 2

4 Punctured pseudospheres
For the stronger inapproximability result for dimensions 3
and higher, Theorem 1.2, we will need a nesting property
not only for images of dense sets in spheres, but also for
images for dense sets in other shapes.

In this section we develop a version of the nesting lemma
that covers all of our applications. The definitions are tai-
lored to these applications. In order to reduce the number of
parameters, we use the same boundε for several indepen-
dent small quantities; if we were aiming at tighter bounds
in the inapproximability results, we could fine-tune each of
these quantities independently.

Let S ⊆ R
d \ {0} be a set, and letε > 0. We call a

setV ⊆ S ε-angularly densein S if for everyx ∈ S there
existsv ∈ V with ‖x − v‖ ≤ ε‖v‖.

We call a setP ⊆ R
d ε-angularly small with respect

to a setV ⊂ R
d \ {0} if there is a choice of a radius

rv ≥ 0 for everyv ∈ V such thatP ⊆ ⋃

v∈V B(v, rv)
(whereB(x, r) denotes the ball of radiusr centered atx)
and

∑

v∈V
rv

‖v‖ ≤ ε (this is a wasteful definition; aim-
ing at more precise quantitative results, we would take
(rv/‖v‖)d−1 instead ofrv/‖v‖, for example).

For our purposes, apseudosphereis a setS ⊂ R
d home-

omorphic to anSd−1 such that

• the hole ofS contains0, and

• there is a retractionrS of R
d\{0} ontoS (i.e.,rS : Rd\

{0} → S is a continuous map whose restriction onS
is the identity map).

A punctured pseudosphereis a pair(S, P ), whereS is a
pseudosphere andP ⊆ S, the “punctures” of the pseudo-
sphere, is a subset ofS, which we will assume to be small
in a suitable sense.

Proposition 4.1 (Nesting lemma for punctured pseudo-
spheres) Let d ≥ 2, let D ≥ 1 and let ε := 1

16D , let
(S, P ) be a punctured pseudosphere inR

d, let V ⊂ S be
an ε-angularly dense set inS, let us assume thatP ⊆ S is
ε-angularly small w.r.t.V , thatP ∩ V = ∅, and thatS \ P

is path-connected, and letf1, f2, . . . , fn: S → R
d be maps

such that:

• Eachfi is D-Lipschitz.

• Eachfi restricted toV is noncontracting.

• We have‖fi(v) − fj(v)‖ ≤ 1
4‖v‖ for all v ∈ V and

all i, j.

• SettingΣi := fi(S) andΣ∗
i := fi(S \ P ), we have

Σi ∩ Σ∗
j = ∅ for all i 6= j.

LetUi denote the unbounded component ofR
d \Σi, and let

us define a relation� on [n] by settingi � j if either i = j
or Σ∗

j ⊂ Ui. Then� is a linear ordering on[n].
Moreover,� is independent of the behavior of thefi on

the punctures, in the following sense: Iff̃1, . . . , f̃i are D-
Lipschitz mappingsS → R

d such thatfi(x) = f̃i(x) for
all x ∈ S \ P and all i (in particular, Σ∗

i = fi(S \ P ) =
f̃i(S \ P )), andΣ∗

i ∩ f̃j(S) = ∅ for all i 6= j, then the
linear ordering induced by thẽfi is the same as�. (Proof
omitted.)

A basic example. Since this proposition is rather tech-
nical, let us present a basic example of a setting in which
it will be applied. LetC be a long cylinder inRd of a
large radiusR, and letV be a set that isε-dense in the
lateral surface ofC. With this V we make a construc-
tion similar to the one in the proof of Theorem 1.1 above.
We setY = [n] × V , and we define a metric onY by
ρY ((i, v), (i′, v′)) = ‖v − v′‖ + δii′ , whereδii′ is the Kro-
necker delta (equal to0 for i = i′ and to1 otherwise).

We assumeε ≪ 1 ≪ R, and so we expect that ifg: Y →
R

d is aD-embedding withD not too large, the images of
then copies ofV in Y have to look like “nested cylinders”.
Let gi: V → R

d be the slice ofg corresponding toi.
In order to speak of “inside and outside” of these im-

ages, we letS to be the whole surface of the cylinderC,
including the top and the bottom, and we extend eachgi

to aD-Lipschitzgi: S → R
d. Now the images of the lat-

eral surfaceL of the cylinder under thegi are disjoint (with
an appropriate setting ofr, ε, D), but we don’t have much
control over the images of the top and bottom. However,
if we defineP as a suitable neighborhood, of radius about
DR, of the top and bottom ofC, then it can be checked that
gi(S \ P ) avoidsgj(S) for i 6= j. In this situation, ifC is
sufficiently long, Proposition 4.1 allows us to conclude that
the images of thegi are nested (in the sense defined in the
proposition).

5 Stronger inapproximability for dimension
3: a warm-up

In this section we present a simple reduction, which pro-
vides an inapproximability result weaker than Theorem 1.2:
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in that theorem, we claim the hardness of distinguishing
betweenO(1)-embeddability andnconst/d-embeddability,
while here we show hardness of distinguishing between
nε-embeddability (ε > 0 arbitrary but fixed) andnconst/d-
embeddability.

We will use an algorithmic problem called BETWEEN-
NESS, which is NP-complete according to Opatrny [24]
(the beautiful reduction of 3-SAT to this problem is also
reproduced in [10]). An instance of BETWEENNESS is a
setT of triples of the form(i, j, k), i, j, k ∈ [n], and the
problem is to decide whetherT is consistent, i.e., whether
there exists a linear ordering� of [n] for whichi is between
j andk for every(i, j, k) ∈ T (that is, eitherj � i � k or
k � i � j).

It will be more convenient to reduce to NON-BET-
WEENNESS, whose instance has the same form as for
BETWEENNESS but the meaning of(i, j, k) is now “i
mustnot be betweenj andk”. Each constraint(i, j, k) in
BETWEENNESS can be equivalently replaced by the two
constraints(j, i, k) and(k, i, j) in NON-BETWEENNESS,
and so NON-BETWEENNESS is NP-complete as well.

The reduction. Let d ≥ 3 be fixed. Given an instance
T of NON-BETWEENNESS forn elements and a bound
D for distortion, we construct a metric spaceY = (Y, ρY ),
with |Y | ≤ (nD)O(d), such that:

• If T is consistent, thenY is O(n)-embeddable inRd.

• If T is not consistent, thenY is notD-embeddable in
R

d.

SettingD = nC for a large constantC, we get that it
is NP-hard to distinguish betweenO(n)-embeddability and
nC -embeddability ofY (and the size ofY is of ordernC0Cd

for an absolute constantC0).
We fix suitable parametersε ≪ 1 ≪ R, with ε suffi-

ciently small andR sufficiently large in terms ofn andD,
and we letS be a(d − 1)-dimensional sphere of radiusR.
We letV be anε-dense set inS, and similar to the exam-
ple following Proposition 4.1, we setY0 := [n] × V and
ρY0

((i, v), (i′, v′)) = ‖v − v′‖ + δii′ . We will refer to the
set{i}×V as theith layer. Next, we will modify(Y0, ρY0

)
to obtainY; this modification reflects the structure ofT .

We choose|T | distinct points onV , sufficiently far from
one another, corresponding to the triples inT . We will call
these points theloci.

Let (i, j, k) ∈ T and letv = v(i,j,k) ∈ V be the corre-
sponding locus. We modify the metric space(Y0, ρY0

) near
v as follows:

• We make a puncture of radius1 in each of the layers
except for theith, jth, andkth. That is, we remove
from Y0 all points(ℓ, u) with ℓ 6∈ {i, j, k} and‖u −
v‖ ≤ 1.

• We connect thejth andkth layers by a (discrete) path
πv,j,k of length1. Namely, we sett = ⌊1/ε⌋, we con-
sider a graph-theoretic path on verticesp0, p1, . . . , pt

with edges of length1/t, and we glue this path toY0

by identifyingp0 with (j, v) andpt with (k, v) (while
p1, . . . , pt−1 are new points).

Having made this modification for every triple ofT , we call
the resulting metric spaceY = (Y, ρY ).

Now it is straightforward to check that for consistent in-
stances,Y embeds withO(n) distortion. Using Proposi-
tion 4.1, it is not hard to show that for inconsistent instances
any embedding ofY incurs distortion at leastD. We omit
the details.

6 Proof of Theorem 1.2
Here we present a different reduction of NON-BETWEEN-
NESS to approximate embeddability inRd, in which con-
sistent instances yieldO(1)-embeddability. The main idea
is similar to the previous reduction: the linear ordering in
NON-BETWEENNESS is encoded in nesting of suitable
“discretized surfaces”. The source of theΩ(n) distortion in
the previous reduction was the nesting of all the surfaces at
the same time.

Here we will allow simultaneous nesting of only at most
3 surfaces at a time. The surfaces won’t be simply spheres,
though, but rather each of them will resemble a network of
branching pipes. We begin with a simple graph-theoretic
lemma.

Lemma 6.1 For every natural numbern there is a graph
G of size polynomial inn and subgraphsG1, G2, . . . , Gn

of G such that (i) EachGi, as well as eachGi ∩ Gj , is
a connected subgraph ofG. (ii) No vertex ofG belongs
to more than3 of theGi. (iii) For every unordered triple
{i, j, k}, there is a vertexaijk ∈ V (Gi)∩V (Gj)∩V (Gk).
(Proof omitted.)

The construction. Let d ≥ 3 be fixed. Given an instance
T of NON-BETWEENNESS forn elements and a param-
eterD representing maximum distortion, we first construct
an initial metric spaceY0 that depends only onn andD.

We choose parametersε ≪ 1 ≪ Redge ≪ Rvert (poly-
nomially depending onn and D, with the degree of the
polynomial independent ofd). We fix an embedding of
the graphG as in Lemma 6.1 intoRd, where vertices are
represented by points and edges by straight segments. We
assume that the minimum edge length is sufficiently large
compared toRvert, the maximum edge length is bounded
by Rvert times a polynomial inn, the minimum distance of
every two vertex-disjoint edges is much larger thanRedge,
and that the minimum angle of two edges sharing a vertex
is bounded below by an inverse polynomial inn.

We now “fatten” the embeddedG: We replace each ver-
texa ∈ V (G) by a ballBa of radiusRvert and each edgee
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by a cylinderCe of radiusRedge. We choose anε-dense set
V in the boundary of the resulting solid (the union of allBa

and allCe). We letVa := V ∩∂Ba andVe := V ∩∂Ce, and

for i ∈ [n] Vi :=
(

⋃

e∈E(Gi)
Ve

)

∪
(

⋃

a∈V (Gi)
Va

)

, where

theGi are the subgraphs as in Lemma 6.1. The metric space
Y0 = (Y0, ρY0

) is given byY0 = {(i, v) : i ∈ [n], v ∈ Vi},
ρY0

((i, v), (i′, v′)) = ‖v − v′‖ + δii′ .Theith layer ofY0 is
{i} × Vi.

Now for every triple(i, j, k) ∈ T , we choose a pointv ∈
Vaijk

, not too close to anyVe, and we connect the points
(j, v) and(k, v) by a discrete path of length1 with spacing
ε. (Since the verticesaijk are indexed byunorderedtriples,
while the triples inT are ordered, we may need several such
paths for a single vertex.) Adding such paths for all triples
in T yields the metric spaceY.

If T is consistent, it is easy to embedY in R
d with dis-

tortionO(1). Rather than trying to formalize this, we refer
to Fig. 2 for a (misleadingly planar) sketch forn = 4, with
T = {(3, 1, 2), (4, 1, 2), (4, 1, 3), (2, 3, 4), (1, 3, 4)} (for
n = 4, the graphG can be taken very simple, as aK4, with
eachGi a triangle).

To show thatD-embeddability implies consistency, we
again apply Proposition 4.1. An additional issue, compared
to the simpler reduction from the previous section, is show-
ing that the orderings of the layers at different vertices are
consistent. In this extended abstract we omit the proof.
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[6] M. Bădoiu, J. Chuzhoy, P. Indyk, and A. Sidiropou-
los. Low-distortion embeddings of general metrics
into the line. In Proc. 37th ACM Symposium on
Theory of Computing, 2005. Full version available at
http://www.mit.edu/˜tasos/papers.html .
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