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Abstract

We consider the problem of computing the smallest possible distortion for embedding of a
given n-point metric space into R

d, where d is fixed (and small). For d = 1, it was known
that approximating the minimum distortion with a factor better than roughly n1/12 is NP-hard.
From this result we derive inapproximability with factor roughly n1/(22d−10) for every fixed
d ≥ 2, by a conceptually very simple reduction. However, the proof of correctness involves
a nontrivial result in geometric topology (whose current proof is based on ideas due to Jussi
Väisälä).

For d ≥ 3, we obtain a stronger inapproximability result by a different reduction: assuming
P 6=NP, no polynomial-time algorithm can distinguish between spaces embeddable in R

d with
constant distortion from spaces requiring distortion at least nc/d, for a constant c > 0. The
exponent c/d has the correct order of magnitude, since every n-point metric space can be

embedded in R
d with distortion O(n2/d log3/2 n) and such an embedding can be constructed in

polynomial time by random projection.
For d = 2, we give an example of a metric space that requires a large distortion for embedding

in R
2, while all not too large subspaces of it embed almost isometrically.

∗An extended abstract of this paper will appear in Proc. 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), Philadelphia, 2008.
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1 Introduction

Let X = (X, ρX ) and Y = (Y, ρY ) be metric spaces and let f :X → Y be an injective mapping
(embedding). The distortion of f , denoted by dist(f), is the smallest D ≥ 1 such that there exists
α > 0 (a scaling factor) for which αρX(x, y) ≤ ρY (f(x), f(y)) ≤ DαρX(x, y) for all x, y ∈ X.
An embedding with distortion at most D is also called a D-embedding. We let cY(X) denote the
infimum of all D ≥ 1 such that X admits a D-embedding into Y.

We will also use the symbol ∆(X) for the aspect ratio of a finite metric space X, which is defined
as the largest distance in X divided by the smallest nonzero distance in X.

Over the past few decades, metric embeddings have resulted in some of the most beautiful and
powerful algorithmic techniques, with applications in many areas of computer science [19, 14]. In
most of these results, low-distortion embeddings provide a way to simplify the data, without losing
too much information.

Here we focus on embeddings of finite metric spaces X into R
d with the Euclidean metric ‖.‖,

where d is a fixed integer. More precisely, we mainly consider the algorithmic problem of computing
or estimating cRd(X) for a given n-point metric space X. For d ≤ 3, this problem has an immediate
application to visualizing finite metric spaces.

It is known that every n-point metric space X embeds in R
d with distortion at most O(n2/d log3/2 n)

[20]. The proof first embeds X into a high-dimensional Euclidean space using a well-known result of
Bourgain [4], and then projects on a random d-dimensional subspace, following a method of John-
son and Lindenstrauss [15]. It provides a randomized polynomial-time algorithm for constructing
an embedding with the distortion mentioned above. In particular, it yields an O(n2/d log3/2 n)-
approximation algorithm for c

Rd(X), and as far as we know, this is the best known approximation
algorithm for this problem.

There exist n-point metric spaces X with cRd(X) = Ω(n1/⌊(d+1)/2⌋) [20], and thus the above
worst-case upper bound cannot be much improved (in particular, for every even dimension it is
tight up to the logarithmic factor).

Here we will show that, assuming P 6=NP, there is no polynomial-time algorithm with approx-
imation ratio much better than n2/d. Namely, we will prove that cRd(X) cannot be approximated
with factor smaller than nc/d for a universal constant c (so at least the exponent c/d has the correct
order of magnitude as a function of d). We now state the results more precisely.

All dimensions hard . . . Bădoiu et al. [6] proved that it is NP-hard to approximate the minimum
distortion required to embed a given n-point metric space X into R

1 with factor better than roughly
n1/12 (see Theorem 3.1 below for a precise formulation). Using their result as a black box, we obtain
an analogous hardness result for embeddings in R

d for every fixed d ≥ 2:

Theorem 1.1 For every fixed d ≥ 2, and for every fixed ε > 0, it is NP-hard to approximate the
minimum distortion required for embedding of a given n-point metric space into R

d within a factor
of Ω(n1/(22d−10)−ε).

Our derivation of this theorem from the 1-dimensional result is conceptually very simple: Given
an n-point metric space X, we consider a (d − 1)-dimensional sphere S in R

d of radius R much
larger than the largest distance in X, and in this S we pick an ε-dense1 finite set V for a sufficiently
small ε > 0. Then we form another metric space Y = (Y, ρY ) as a suitable Cartesian product of X

with (V, ‖.‖).
1A set V in a metric space (X, ρX) is called ε-dense if for each x ∈ X there is v ∈ V with ρX(x, v) ≤ ε.
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Figure 1: A D-embedding of Y (a schematic illustration for d = 2 and |X| = 3).

It is easy to show that cRd(Y) = O(cR1(X)). The harder part is extracting an O(D)-embedding
of X into R

1 from an arbitrary given D-embedding g:Y → R
d; see Fig. 1. Intuitively, the image of

each copy of V in Y has to “look like” a deformed sphere, and these “deformed spheres” all have
to be nested. Hence they are linearly ordered, and this provides an ordering of the points of X in
a sequence, say (a1, a2, . . . , an). Then we define an embedding f :X → R

1 so that f(a1) < f(a2) <
· · · < f(an), and the difference f(ai+1) − f(ai) is the distance of the (i + 1)st “deformed sphere”
from the ith one.

The claim about the nesting of the “deformed spheres” may seem intuitively obvious, but
apparently it is not entirely easy to prove, and for establishing it rigorously we will apply some
tools from analysis and from algebraic topology (Section 2); part of the current proof is due to
Väisälä [26]. This result and some by-products of the proof can be of independent interest. Then
we prove Theorem 1.1 in Section 3 along the lines just indicated.

. . . 3 and more dimensions harder? Theorem 1.1 shows that for embeddability in R
d it is hard

to distinguish bad spaces from even much worse ones. However, for applications of low-distortion
embeddings, one is usually most interested in efficiently distinguishing good spaces (embeddable
with a constant distortion, say) from bad ones.

For example, Theorem 1.1 leaves open the possibility of a polynomial-time algorithm that, given
a metric space X, constructs an embedding of X into R

d with distortion bounded by a polynomial in
the optimal distortion cRd(X). For d = 1, there are indeed partial results of this kind for restricted
classes of metrics, namely, for weighted trees [6] and for unweighted graphs [8].2 Thus, at least for
these two classes, good and bad embeddability in R

1 can be distinguished efficiently (although in
a somewhat weak sense).

Our next result shows that for d ≥ 3, even this kind of distinguishing good from bad is hard in
general:

Theorem 1.2 For every fixed d ≥ 3, it is NP-hard to distinguish between n-point metric spaces
that embed in R

d with distortion at most D0, and ones that require distortion at least nc/d, where
c > 0 is a universal constant and D0 is a constant depending on d.

Before proving this result, we first establish a weaker but simpler one in Section 5. The tools
developed in this simpler proof also appear in the proof of Theorem 1.2 in Section 6.

2By a unweighted graph we mean a metric space whose point set is the vertex set of a graph G and whose metric
is the shortest-path metric of G (where each edge has length 1). Similarly, the metric of a weighted tree is the
shortest-path metric of some tree, where the edges may have arbitrary nonnegative lengths.
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The techniques used in the proof of Theorem 1.2 do not seem to be applicable for the case of
embedding into R

1 or R
2. So for d = 1 or d = 2, it is still possible that there exists a polynomial-

time algorithm that computes an embedding of a given metric space X into R
d with distortion at

most cRd(X)O(1).

No Menger-type condition for approximate embeddings into the plane. While we
cannot exclude the existence of an efficient algorithm that distinguishes “good spaces from bad
ones” for embeddings in R

2, we provide some evidence that obtaining such an algorithm may not
be easy, since there is no “local” characterization of good embeddability.

First we recall a well-known lemma of Menger [21], asserting that an n-point metric space X

embeds isometrically in R
d if (and only if) every subspace of X on at most d + 3 points so embeds.

Thus, isometric embeddability into R
d can be decided locally, by inspecting all (d + 3)-tuples of

points (we should remark that much better algorithms can be obtained by other methods).
In contract to this, we prove the following in Section 7:

Theorem 1.3 Let ε ∈ (0, 1) be given, let n be sufficiently large, and let 1/
√

ε ≤ k ≤ c
√

εn, where c
is a sufficiently small constant. Then there exists an n-point metric space X, whose embedding in R

2

requires distortion Ω(
√

ε n/k), while every k-point subspace can be embedded in R
2 with distortion

at most 1 + ε.

Related work. Worst-case bounds for embedding in R
d. Some special classes of metrics

are known to embed in R
d with distortion better than the roughly n2/d upper bound for general

metrics: weighted trees with distortion O(n1/(d−1)) [12] and ultrametrics with distortion O(n1/d)
[7]. Unweighted trees [2] and, more generally, unweighted outerplanar graphs [3] embed in R

2

with distortion O(n1/2). On the other hand, there exist unweighted planar graphs for which cR2 is
Ω(n2/3) [3].

Computing low-distortion embeddings in R
1. We have already mentioned the inapproximability re-

sult of Bădoiu et al. [6] concerning embeddings of general metric spaces in R
1. They complemented

this result by an O(nβ) approximation algorithm for embedding weighted trees in R
1 for some

constant β < 1. For embedding an arbitrary metric space X, they obtained an algorithm with ap-
proximation ratio depending on ∆(X); this was further improved in [5]. For embeddings in R

1 there
is also an O(n1/3) approximation algorithm for unweighted trees and an O(n1/2) approximation
algorithm for unweighted graphs [8].

Embeddings in R
2 and R

3. In [7] it is shown that it is NP-hard to compute a minimum-distortion
embedding into R

2 with the ℓ∞ metric. The same paper gives an O(n1/3)-approximation algorithm
for embedding an ultrametric in R

2, and an O(logO(1) ∆(X))-approximation algorithm for this case
was given in [23].
Unlimited dimension and other cases. Linial et al. [19] observed that an embedding with the
smallest possible distortion into ℓ2 (or equivalently, into a Euclidean space of an arbitrary dimen-
sion) can be computed in polynomial time via semidefinite programming. In contrast, it is well
known that deciding isometric embeddability in ℓ1 is NP-hard (see [11]). Lee et al. [18] obtained
an O(1)-approximation algorithm for embedding weighted trees into ℓp.

The problem of approximating the minimum distortion embedding has also been studied for
the case where we are given two metric spaces X, Y of the same cardinality and we want to know
cY(X); we refer to [13, 25, 16].
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Figure 2: An extension of a D-embedding.

Menger-type questions. The kind of question which we addressed in Theorem 1.3 for embeddings in
R

2 was studied for embeddings in ℓ1 by Arora et al. [1], and their results were further strengthened
by Charikar et al. [9]. The latter authors proved that if every k-point subspace of a an n-point metric
space X embeds into ℓ1 with distortion D, then X embeds into ℓ1 with distortion O(D log(n/k));
moreover, this result is nearly the best possible.

2 Deformed spheres and nesting lemmas

As was outlined in the introduction, in the proof of Theorem 1.1 we will be confronted with the
following setting: We have a finite set V in a (d − 1)-dimensional sphere S; for the purposes of
this section we may assume that S = Sd−1 is the unit sphere in R

d. We assume that V is ε-dense
in Sd−1, and we are given a D-embedding g:V → R

d. By re-scaling we may assume that g is
noncontracting and D-Lipschitz.

In order to employ topological reasoning about the image of such g, we extend g to a continuous
map g:Sd−1 → R

d by a suitable interpolation (a tool for doing this will be mentioned in Section 2.2);
see Fig. 2. We can make sure that g is still D-Lipschitz, but generally it won’t be noncontracting,
and it can even fail to be injective.

However, g satisfies the following weaker version of “noncontracting”: For all x, y ∈ Sd−1 we
have ‖g(x) − g(y)‖ ≥ ‖x − y‖ − δ, where δ = 2Dε (this is easy to check; see Lemma 3.3 below).

The main goal of this section is to show that the image of such g behaves, in a suitable sense, as
an “approximate sphere”. This is expressed in Theorem 2.1 below. For the proof of Theorem 1.2
we will need a technical extension of these results; namely, instead of images of Sd−1, we need to
deal with images of more general shapes, e.g., long tubes and punctured spheres. This is done in
Section 4.

2.1 Big holes and nested spheres

For a compact set K ⊂ R
d, let us call a bounded component of R

d \ K a hole of K.

Theorem 2.1

(i) (A big hole exists) Let δ ∈ [0, 1
4), let f :Sd−1 → R

d be a continuous map that satisfies ‖f(x)−
f(y)‖ ≥ ‖x − y‖ − δ for all x, y ∈ Sd−1, and let Σ := f(Sd−1). Then Σ has a hole containing
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a ball of radius 1
4 .

(ii) Let f1, f2 : Sd−1 → R
d be maps satisfying the condition as in (i) for some δ < 1

4 , and suppose
that, moreover, ‖f1(x) − f2(x)‖ < 1

4 for all x ∈ Sd−1. Then some hole of Σ1 := f1(S
d−1)

intersects some hole of Σ2 := f2(S
d−1).

(iii) (All holes but one are narrow) Let δ, f , and Σ be as in (i), and let us assume that, moreover,
f is D-Lipschitz for some D ≥ 1. Then there is at most one hole of Σ containing a ball of
radius 4Dδ.

Part (ii) is what we will need, part (i) can be regarded as a by-product of the proof, and part
(iii) we do not need but it comes almost for free and it completes the picture. The main ideas of
the proof of (i) and (iii) as given below were found by Väisälä [26] in an answer to a question of
the first author, and here they are used with his kind permission (we have independently found
another proof, but since it was much less elegant, we reproduce Väisälä’s).

Remark. The constants in the theorem are generally not optimal. However, in part (i), our
method also provides an exact result “in the limit”: By modifying the parameters in the proof
appropriately (namely, setting r = r(δ) = 1 − 2

√
δ and ε =

√
δ in the proof of Lemma 2.3 below),

we obtain the existence of a hole containing a ball of radius r(δ) that tends to 1 as δ → 0.

Remark. In part (iii), for dimension d ≥ 3 we cannot claim that all holes of Σ but one have
small diameter, since there can be many thin but very long holes. For d = 2 all holes but one must
have a small diameter [26].

Here is the result we need for the proof of Theorem 1.1:

Corollary 2.2 (Nesting lemma) Let δ < 1
4 and let f1, f2, . . . , fn:Sd−1 → R

d be continuous maps
satisfying

• ‖fi(x) − fi(y)‖ ≥ ‖x − y‖ − δ for all x, y ∈ Sd−1 and all i,

• ‖fi(x) − fj(x)‖ ≤ 1
4 for all i, j and all x ∈ Sd−1, and

• Σi ∩ Σj = ∅ whenever i 6= j, where Σi = fi(S
d−1).

Let Ui denote the unbounded component of R
d \Σi, and let us define a relation � on [n] by setting

i � j if Uj ⊆ Ui. Then � is a linear ordering on [n].

Proof. It is clear that � is a partial ordering, so it suffices to check that for every i 6= j we have
either Ui ⊂ Uj or Uj ⊂ Ui.

Theorem 2.1(ii) shows that some hole of Σi intersects some hole of Σj. Since Σi ∩ Σj = ∅ and
Σi, Σj are path-connected, Σi and all of its holes are contained in some component of R

d \Σj , and
vice versa, and the nesting lemma follows. 2

2.2 A lemma on approximate inverse

The first main step in the proof of Theorem 2.1 is the next lemma, which says that f has an
“approximate inverse” mapping h that extends to some neighborhood of Σ.
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Lemma 2.3 Let f , Σ, and δ < 1
4 be as in Theorem 2.1(i), and let Ωr denote the closed r-

neighborhood of Σ in R
d. Then there is a continuous map h: Ω1/4 → Sd−1 such that ‖h(f(x))−x‖ ≤

8δ for all x ∈ Sd−1, and (consequently) the composition hf :Sd−1 → Sd−1 is homotopic3 to the iden-
tity map idSd−1.

In the proof we will use a basic result about Lipschitz maps: the Kirszbraun theorem [17], which
asserts that every Lipschitz mapping from a subset of a Hilbert space H1 into a Hilbert space H2

can be extended to a Lipschitz map H1 → H2, with the same Lipschitz constant.

Proof of Lemma 2.3. Let us put ε := δ and r := 1
4 . Let N ⊂ Σ be an ε-net4 in Σ. We choose

a mapping g:N → Sd−1 with fg = idN ; in other words, for every y ∈ N we arbitrarily choose
g(y) ∈ f−1(y).

We claim that g is 2-Lipschitz. Indeed, if y, y′ ∈ N are distinct and x = g(y), x′ = g(y′), then
the condition on f gives ‖x−x′‖ ≤ ‖f(x)−f(x′)‖+ δ = ‖y−y′‖+ δ < (1+ δ/ε)‖y−y′‖ = 2‖y−y′‖
since ‖y − y′‖ > ε.

Next, using the Kirszbraun theorem mentioned above, we extend g to a 2-Lipschitz map g: Ωr →
R

d. We check that 0 is not in the image of g; indeed, if we had g(y) = 0 for some y ∈ Ωr, we could
find a point z ∈ N at distance at most r + ε from y, hence ‖g(z) − g(y)‖ ≤ 2(r + ε) < 1 (using
r = 1

4 , ε = δ < 1
4), but g(y) = 0 while ‖g(z)‖ = 1 since g(z) = g(z) ∈ Sd−1.

We can now define the desired h: Ω → Sd−1 as in the lemma, by h(y) = g(y)/‖g(y)‖.
Given x ∈ Sd−1, we pick z ∈ N at most ε away from f(x), and we calculate ‖g(f(x)) − x‖ ≤

‖g(f(x))−g(z)‖+‖g(z)−x‖ ≤ 2‖z−f(x)‖+‖z−f(x)‖+δ ≤ 3ε+δ = 4δ. Since ‖g(f(x))−h(f(x))‖ =
1 − ‖g(f(x))‖ ≤ ‖x − g(f(x))‖, we obtain ‖h(f(x)) − x‖ ≤ 2‖g(f(x)) − x‖ ≤ 8δ as claimed.

For δ < 1
4 , this implies that h(f(x)) 6= −x for all x ∈ Sd−1, and consequently, hf ∼ idSd−1 (this

is a standard and easy fact in topology; if x and h(f(x)) are not antipodal, they are connected by
a unique shortest arc, and the homotopy moves along this arc). The lemma is proved. 2

2.3 The Alexander duality

In the subsequent proof of Theorem 2.1, we will use cohomology groups. We will not need their
definition, only few very simple properties, which we will explicitly state, plus one slightly deeper
result of algebraic topology. These can be taken as purely formal rules, which we will apply in the
proof. We consider (d − 1)-dimensional cohomology, since it is closely related to the number of
holes.

Each compact set X ⊂ R
d is assigned the (d−1)-dimensional Čech (or equivalently, Alexander–

Spanier) cohomology group5 Ȟd−1(X); for definiteness we consider integer coefficients, although
the coefficient ring doesn’t matter in our considerations. This Ȟd−1(X) is an Abelian group, and if
it is finitely generated, then it is isomorphic to Z

b for an integer b ≥ 0, called the rank of Ȟd−1(X).

3We recall that two continuous maps f, g:X → Y of topological spaces are homotopic, in symbols f ∼ g, if there
exists a continuous map F : X × [0, 1] → Y such that F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X.

4We recall that a subset N ⊆ M in a metric space (M, ρM ) is an ε-net if every two points of N have distance
greater than ε and N is inclusion-maximal with respect to this property; that is, every point of M is at most ε far
from some point of N .

5We need Čech cohomology so that our considerations are valid even for X with various local pathologies. In our
application of Theorem 2.1 we can assume that the mapping f is “nice”, e.g., that its image Σ is the union of finitely
many simplices, and then we could work with the perhaps more familiar singular or simplicial cohomology.
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A very rough intuition is that the elements of Ȟd−1(X) correspond to (equivalence classes of)
(d − 1)-dimensional “surfaces” inside X, with nonzero elements corresponding to “surfaces” that
“enclose” one or more of the holes of X. (This is really closer to the idea of homology, rather than
cohomology, but hopefully it is not totally misleading for our purposes.)

A special case of the Alexander duality, which we will state precisely in the proof of Lemma 2.4
below, tells us that the rank of Ȟd−1(X) equals the number of holes of X. For example, Sd−1

encloses a single hole, and we have Ȟd−1(Sd−1) ∼= Z.
A continuous map f :X → Y of compact sets induces a group homomorphism f∗: Ȟd−1(Y ) →

Ȟd−1(X); we should stress that f∗ goes in opposite direction compared to f . For the composition
of maps we then have (fg)∗ = g∗f∗ (the last two properties are usually expressed by saying that
cohomology is a contravariant functor). Moreover, if f1, f2:X → Y are homotopic maps, then
f∗
1 = f∗

2 .
The following lemma encapsulates what we will need from the Alexander duality.

Lemma 2.4 ((d−1)-dimensional cohomology and holes)

(i) Let d ≥ 2, let X ⊆ Y be compact sets in R
d, let j:X → Y denote the inclusion map, and let

j∗: Ȟd−1(Y ) → Ȟd−1(X) be the induced homomorphism in cohomology. Then the number of
holes of X that contain at least one hole of Y equals the rank of the image Im j∗.

(ii) Let d ≥ 2, let X1,X2, Y be compact sets in R
d, X1 ⊆ Y , X2 ⊆ Y , let j1, j2 be the inclusion

maps and j∗1 , j∗2 the induced homomorphisms in cohomology. Suppose that Ker(j∗1) ∪ Ker(j∗2 )
does not generate all of Ȟd−1(Y ). Then there is a hole of Y contained both in a hole of X1

and in a hole of X2.

Proof. The usual (modern) statement of Alexander duality, for the particular dimensions we are
interested in, tells us that for every compact X ⊂ R

d, there is an isomorphism

αX : Ȟd−1(X) → H̃0(R
d \ X).

Here H̃0(.) is the 0-dimensional reduced singular homology group, which in our case can be concretely
represented as follows: Each element γ ∈ H̃0(R

d \X) can be regarded as a function that assigns to
every hole of X an integer number (and with only finitely many nonzero values, in case that there
are infinitely many holes). The group operation is componentwise addition; thus, H̃0(R

d \ X) is a
free Abelian group whose rank is the number of holes.

Now let X ⊆ Y , let j:X → Y be the inclusion map, and let i: Rd \Y → R
d \X be the inclusion

map of the complements. We need a property of the Alexander duality called naturality with respect
to inclusion,6 which means that

αXj∗ = i∗αY , (1)

where i∗: H̃0(R
d \ Y ) → H̃0(R

d \X) is the homomorphism in homology induced by the inclusion i.
If we represent H̃0(R

d\Y ) and H̃0(R
d\X) as above, i∗ acts as follows: Given an integer function

γ on the holes of Y , the value of the function i∗(γ) on a given hole U of X is the sum of γ(V ) over
all holes V of Y contained in U . Thus, the rank of Im i∗ is the number of holes of X that contain
some hole of Y , and since by (1), Im i∗ and Im j∗ are isomorphic, part (i) of the lemma follows.

6See Munkres [22] §72–74; the naturality is explicitly stated there only for polyhedral sets, since it is needed for
the proof of the general case, but it follows for the general case as well by the limiting process used in the proof.
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For part (ii), from the assumption and (1) we get that Ker(i1∗) ∪ Ker(i2∗) do not generate
all of H̃0(R

d \ Y ). Now Ker(i1∗) contains all functions that are nonzero only on the holes of
Y not contained in any hole of X1, and similarly for Ker(i2∗). There is an element (function)
γ ∈ H̃0(R

d \ Y ) that is not a linear combination of such functions, and such a γ has to be nonzero
on a hole that is contained both in a hole of X1 and in a hole of X2. 2

Proof of Theorem 2.1. Let us consider the map f as in part (i), and Ωr and h as in Lemma 2.3.
Let j: Σ → Ω1/4 denote the inclusion map. The composed map hf = hjf :Sd−1 → Sd−1 is homo-

topic to the identity, and so the induced map f∗j∗h∗: Ȟd−1(Sd−1) → Ȟd−1(Sd−1) in cohomology is
the identity as well. Since Ȟd−1(Sd−1) 6= 0, the homomorphism j∗: Ȟd−1(Ω1/4) → Ȟd−1(Σ) cannot
be zero. By Lemma 2.4(i) this means that there is a hole of Σ that contains a hole of Ω1/4, and

such a hole of Σ contains a 1
4 -ball.

In part (ii), let Ω be the 1
4 -neighborhood of Σ1, let j1: Σ1 → Ω be the inclusion map, and

let h1: Ω → Sd−1 be as in the proof of (i), i.e., with h1f1 ∼ idSd−1. By the assumption Σ2 ⊆ Ω
as well (with inclusion map j2), and f1 and f2 are homotopic as maps Sd−1 → Ω, since the
segment f1(x)f2(x) is contained in Ω for every x ∈ Sd−1. So the homomorphisms f∗

1 j∗1 and f∗
2 j∗2 in

cohomology are equal, and also nonzero, since f∗
1 j∗1h∗

1 is the identity in Ȟd−1(Sd−1).
The kernels of j∗1 and j∗2 are both contained in Ker(f∗

1 j∗1) = Ker(f∗
2 j∗2), and the latter is not all

of Ȟd−1(Ω). Thus, Lemma 2.4(ii) implies that there is a hole of Ω contained both in a hole of Σ1

and in a hole of Σ2, and part (ii) is proved.

For part (iii), let us consider the map h as in Lemma 2.3, but restricted to the domain Σ. This
time we set r = 4Dδ, and we let j: Σ → Ωr be the inclusion map. In part (i), we considered the
composition hf ; here we look at fh. This is a map Σ → Σ, but we regard it as a map Σ → Ωr,
and we want to show that it is homotopic to j.

To this end, it suffices to check that ‖f(h(y)) − y‖ ≤ 2r for all y ∈ Σ, since then the segment
connecting f(h(y)) to y lies completely in Ωr and it defines the desired homotopy.

Choosing x ∈ Sd−1 with y = f(x), Lemma 2.3 gives ‖h(y)−x‖ ≤ 8δ, and thus ‖f(h(y))− y‖ ≤
8Dδ = 2r as needed.

By the homotopy just established, we get that h∗f∗ = j∗ as homomorphisms Ȟd−1(Ωr) →
Ȟd−1(Σ). But since Im f∗ ⊆ Hd−1(Sd−1), which has rank 1, Im j∗ has rank at most 1, and thus
there is at most one hole of Σ that contains a hole of Ωr. 2

3 Hardness for R
1 implies hardness for R

d

As was mentioned in the introduction, we derive Theorem 1.1 from the result of Bădoiu et al. [6] on
inapproximability for embeddings into R

1. By inspecting the full version of that paper (available
on-line), one can check that their proof yields the following:

Theorem 3.1 (Bădoiu et al. [6]) Assuming P 6= NP, there is no polynomial-time algorithm with
the following properties:

• The input of the algorithm is an n-point metric space X with ∆(X) = O(n).

• If X admits an O(n4/12)-embedding into R
1, the algorithm answers YES.
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• If X is not embeddable in R
1 with distortion smaller than Ω(n5/12−ε), the algorithm answers

NO.

This theorem together with the next proposition imply Theorem 1.1 by a simple calculation.

Proposition 3.2 Let X = (X, ρX ) be an n-point metric space, let d ≥ 2 be a fixed integer, and let
Dmax ≥ 1 be a parameter (specifying the maximum distortions we want to consider). There exists a

metric space Y = (Y, ρY ), |Y | = O(nD
2(d−1)
max ∆(X)d−1), which can be constructed in time polynomial

in n, ∆(X), and Dmax (the implicit constants depending on d), with the following properties:

(i) If X can be D-embedded in R
1 for some D ≥ 1, then Y can be (1.1D)-embedded 7 in R

d.

(ii) Given a D-embedding of Y in R
d for some D, 1 ≤ D ≤ Dmax, one can construct a 1.1D-

embedding of X in R
1 in polynomial time.

The construction. We follow the sketch given after Theorem 1.1. Let us assume that the
smallest distance in X is 1 and the largest one is ∆. We let C = C(d) be a sufficiently large
constant, we set R := CDmax∆, and we let S be the (d − 1)-dimensional sphere in R

d centered at
0 of radius R. We set ε := 1

CDmax
, and we choose V as an ε-dense subset of S (that is, each point

of S has distance at most ε to some point of V ); as is well known, we can assume that V has size
O((R/ε)d−1) and is computable in time polynomial in R/ε.

Then we let Y = (Y, ρY ) := X ×L2
V ; that is, we set Y := X × V , and we define the metric ρY

by
ρY ((a, v), (a′, v′)) =

√

ρX(a, a′)2 + ‖v − v′‖2.

Proof of Proposition 3.2(i). Let f :X → R
1 be a D-embedding; we assume that it is non-

contracting and D-Lipschitz, and satisfies min f(X) = 0. We define g:Y → R
d by g(a, v) :=

(R + f(a))v, so that the image of (a, v) lies on the sphere of radius R + f(a) concentric with S.
This embedding is illustrated in Fig. 3 (the picture is not realistic, though, since the radii should
be larger and the points denser than shown).

Bounding the distortion of g can be divided into two steps. Formally we “factor” g through an
auxiliary metric space Z := f(X)×L2

V (constructed from f(X) with the metric of R
1 in the same

way as Y was constructed from X). So we define g1:Y → Z by g1(a, v) = (f(a), v) and g2:Z → R
d

by g2(f(a), v) = g(a, v). Now g = g2g1, so dist(g) ≤ dist(g2)dist(g1). It is almost obvious (and easy
to check) that dist(g1) ≤ dist(f) = D. Checking dist(g2) ≤ 1.1 (for C sufficiently large) is a simple
exercise; geometrically, it amounts to bounding the metric difference between a narrow annulus in
R

d and a narrow cylindric band in R
d+1, and we omit it. 2

For part (ii), let g:Y → R
d be a D-embedding; for convenience, we assume that it is noncon-

tracting and D-Lipschitz. For each a ∈ X we consider the “slice” of g, i.e., the mapping ga:V → R
d

given by ga(v) = g(a, v).
Next, we extend each ga to a D-Lipschitz map ga:S → R

d using the Kirszbraun theorem
(mentioned after Lemma 2.3).8 Let Σa := ga(S) be the image of ga.

7If needed, we could replace 1.1 by any other constant greater than 1, with appropriate adjustments in other
constants. We use 1.1 so that we need not introduce an extra parameter.

8Another way of extending the ga is to assume that V is a vertex set of some fine enough triangulation of Sd−1,
and extend affinely on each simplex of the triangulation. In this way we have more control about the local properties
of the image (which is piecewise linear), but we need to worry about the existence of a suitable triangulation.
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X embedded in R
1 Y embedded in R

d

Figure 3: Embedding of Y from an embedding of X.

Now we want to use the nesting lemma (Corollary 2.2) to show that the Σa have to be nested.
More precisely, we want to check that by scaling both the domain and range of each ga by 1

R , we
obtain maps Sd−1 → R

d as in Corollary 2.2. This is done using the next two lemmas.

Lemma 3.3 For all x, y ∈ S we have ‖ga(x) − ga(y)‖ ≥ ‖x − y‖ − 3
C .

Proof. (Routine.) We find u ∈ V with ‖x − u‖ ≤ ε, and similarly v ∈ V for y. Then
‖ga(x) − ga(y)‖ ≥ ‖ga(u) − ga(v)‖ − ‖ga(x) − ga(u)‖ − ‖ga(y) − ga(v)‖ ≥ ‖u − v‖ − 2Dε ≥ ‖x −
y‖ − 2ε − 2Dε ≥ ‖x − y‖ − 3

C . 2

The next lemma follows by very similar considerations and we omit the proof.

Lemma 3.4

(i) For a 6= b, the Euclidean distance of Σa and Σb is at least ρX(a, b) − 2
C , and in particular,

Σa ∩ Σb = ∅.

(ii) For any a, b ∈ X and x ∈ S, we have ‖ga(x) − gb(x)‖ ≤ 2Dmax∆.

Proof of Proposition 3.2(ii). As was announced above, we can now apply Corollary 2.2 to the
maps ga with domain and range rescaled by 1

R (using δ = 3/CR < 1
4 and 2Dmax∆/R ≤ 1

4). Letting
Ua denote the unbounded component of R

d \ Σa, we can number the points of X as a1, . . . , an so
that for i < j we have Uai

⊃ Uaj
.

For i = 1, 2, . . . , n− 1 we define δi as the (Euclidean) distance of Σai
from Σai+1

, and we define

a mapping f :X → R
1 by f(ai) =

∑i−1
j=1 δj .

Assuming that the original mapping g has distortion at most D, we will prove that f has
distortion at most 1.1D. First we show that f contracts distances by a factor of at most 1.1.
Lemma 3.4(i) gives δi ≥ ρX(ai, ai+1) − 2/C ≥ ρX(ai, ai+1)/1.1 (assuming C large). The triangle
inequality then shows that |f(ai) − f(aj)| ≥ ρX(ai, aj)/1.1 for all i, j.

Next, we want to bound the Lipschitz constant of f . Let us fix a point v0 ∈ V and let us
abbreviate xi := g(ai, v0). Let us fix i < j and let us consider the line segment xixj . We note that
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whenever k lies between i and j, the segment xixj intersects Σak
. This is because Σaj

⊂ Uak
, while

Σai
∩Uak

= ∅. Thus, for each k, i ≤ k ≤ j, we can fix a point yk ∈ Σak
on xixj, where yi = xi and

yj = xj (we note that yk also depends on i and j). Then

|f(aj) − f(ai)| =

j−1
∑

k=i

δk ≤
j−1
∑

k=i

‖yk+1 − yk‖ = ‖xi − xj‖

≤ DρY ((ai, v0), (aj , v0)) = DρX(ai, aj)

since g is D-Lipschitz.
It remains to show how f can be found from g in polynomial time. First we need to sort the

Σa. To compare Σa and Σb, we can compute a point with the minimum x1-coordinate, say, of
Σa ∪ Σb and see if it lies in Σa or Σb (here we can use a property which follows from the proof of
the Kirszbraun theorem, namely, that we may assume ga(S) ⊆ conv(ga(V )), which implies that
the smallest point of Σa lies in ga(V )). Then we can approximate the distance of Σa to Σb by the
distance of the finite sets ga(V ) and gb(V ); this causes a small additive error which can increase
the distortion of f only negligibly. This concludes the proof of Proposition 3.2. 2

4 Punctured pseudospheres

For the stronger inapproximability result for dimensions 3 and higher, Theorem 1.2, we will need
a nesting property not only for images of dense sets in spheres, but also for images for dense sets
in other shapes.

In this section we develop a version of the nesting lemma that covers all of our applications.
The definitions are tailored to these applications. In order to reduce the number of parameters, we
use the same bound ε for several independent small quantities; if we were aiming at tighter bounds
in the inapproximability results, we could fine-tune each of these quantities independently.

Let S ⊆ R
d \{0} be a set, and let ε > 0. We call a set V ⊆ S ε-angularly dense in S if for every

x ∈ S there exists v ∈ V with ‖x − v‖ ≤ ε‖v‖.
We call a set P ⊆ R

d ε-angularly small with respect to a set V ⊂ R
d \ {0} if there is a choice

of a radius rv ≥ 0 for every v ∈ V such that P ⊆ ⋃

v∈V B(v, rv) (where B(x, r) denotes the ball
of radius r centered at x) and

∑

v∈V
rv

‖v‖ ≤ ε (this is a wasteful definition; aiming at more precise

quantitative results, we would take (rv/‖v‖)d−1 instead of rv/‖v‖, for example).
For our purposes, a pseudosphere is a set S ⊂ R

d homeomorphic to an Sd−1 such that

• the hole of S contains 0, and

• there is a retraction rS of R
d \ {0} onto S (i.e., rS : Rd \ {0} → S is a continuous map whose

restriction on S is the identity map).

A punctured pseudosphere is a pair (S,P ), where S is a pseudosphere and P ⊆ S, the “punctures”
of the pseudosphere, is a subset of S, which we will assume to be small in a suitable sense.

Proposition 4.1 (Nesting lemma for punctured pseudospheres) Let d ≥ 2, let D ≥ 1 and
let ε := 1

16D , let (S,P ) be a punctured pseudosphere in R
d, let V ⊂ S be an ε-angularly dense set

in S, let us assume that P ⊆ S is ε-angularly small w.r.t. V , that P ∩ V = ∅, and that S \ P is
path-connected, and let f1, f2, . . . , fn:S → R

d be maps such that:
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• Each fi is D-Lipschitz.

• Each fi restricted to V is noncontracting.

• We have ‖fi(v) − fj(v)‖ ≤ 1
4‖v‖ for all v ∈ V and all i, j.

• Setting Σi := fi(S) and Σ∗
i := fi(S \ P ), we have Σi ∩ Σ∗

j = ∅ for all i 6= j.

Let Ui denote the unbounded component of R
d \Σi, and let us define a relation � on [n] by setting

i � j if either i = j or Σ∗
j ⊂ Ui. Then � is a linear ordering on [n].

Moreover, � is independent of the behavior of the fi on the punctures, in the following sense: If
f̃1, . . . , f̃i are D-Lipschitz mappings S → R

d such that fi(x) = f̃i(x) for all x ∈ S \ P and all i (in
particular, Σ∗

i = fi(S \ P ) = f̃i(S \ P )), and Σ∗
i ∩ f̃j(S) = ∅ for all i 6= j, then the linear ordering

induced by the f̃i is the same as �.

A basic example. Since this proposition is rather technical, let us present a basic example
of a setting in which it will be applied. Let C be a long cylinder in R

d of a large radius R (see
Fig. 4 left), and let V be a set that is ε-dense in the lateral surface of C. With this V we make a
construction similar to the one in the proof of Theorem 1.1 above. We set Y = [n] × V , and we
define a metric on Y by ρY ((i, v), (i′ , v′)) = ‖v − v′‖ + δii′ , where δii′ is the Kronecker delta (equal
to 0 for i = i′ and to 1 otherwise).

We assume ε ≪ 1 ≪ R, and so we expect that if g:Y → R
d is a D-embedding with D not too

large, the images of the n copies of V in Y have to look like “nested cylinders”. Let gi:V → R
d be

the slice of g corresponding to i.
In order to speak of “inside and outside” of these images, we let S to be the whole surface of the

cylinder C, including the top and the bottom, and we extend each gi to a D-Lipschitz gi:S → R
d.

Now the images of the lateral surface L of the cylinder under the gi are disjoint (with an appropriate
setting of r, ε,D), but we don’t have much control over the images of the top and bottom, as is
schematically indicated in Fig. 4 on the right (in a 2-dimensional cross-section). However, if we
define P as a suitable neighborhood, of radius about DR, of the top and bottom of C, then it
can be checked that gi(S \ P ) avoids gj(S) for i 6= j. In this situation, if C is sufficiently long,
Proposition 4.1 allows us to conclude that the images of the gi are nested (in the sense defined in
the proposition).

Towards the proof of Proposition 4.1. Let us define

Ω :=
⋃

v∈V

B(f1(v), 1
2‖v‖).

As the next lemma shows, Ω is a neighborhood of all the Σi, and to some extent it will play the
role of Ω 1

4

from the proof of Theorem 2.1(i)–(ii).

Lemma 4.2 We have Σi ⊆ Ω for all i, and all the fi are homotopic as maps S → Ω.

Proof. (A routine “ε-density” argument.) Given a point fi(x) ∈ Σi, we choose v ∈ V with
‖x− v‖ ≤ ε‖v‖. Then ‖fi(x)− f1(v)‖ ≤ ‖fi(x)− fi(v)‖+ ‖fi(v)− f1(v)‖ ≤ Dε‖v‖+ 1

4‖v‖ < 1
2‖v‖,

and hence fi(x) ∈ B(f1(v), 1
2‖v‖). Similarly f1(x) ∈ B(f1(v), 1

2‖v‖), so the segment f1(x)fi(x) is
contained in Ω for every x, and thus fi ∼ f1 as claimed. 2
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Figure 4: The set V (left), and an embedding of Y and its extension (right).

Lemma 4.3 There is a point c 6∈ Ω that lies in a hole Hi of Σi for each i.

Proof. We imitate the proof of Theorem 2.1(ii). We set N := f1(V ), for every z ∈ N we fix
g(z) ∈ f−1

1 (z), and we fix a 1-Lipschitz extension g: Ω → R
d of g.

We check that 0 6∈ Im g: Assuming 0 = g(y), y ∈ Ω, we choose v ∈ V with y ∈ B(f1(v), 1
2‖v‖).

Then ‖v‖ = ‖g(y) − g(f1(v))‖ ≤ ‖y − f1(v)‖ ≤ 1
2‖v‖, a contradiction since v 6= 0.

Next, we claim that gf1 ∼ idS as maps S → R
d \ {0}. It suffices to verify that the segment

connecting x to g(f1(x)) doesn’t contain 0, for all x ∈ S. As usual, we fix v ∈ V with ‖x−v‖ ≤ ε‖v‖;
then we also have ‖v‖ ≤ ‖x‖/(1−ε) ≤ 2‖x‖. We estimate ‖g(f1(x))−x‖ ≤ ‖g(f1(x))−g(f1(v))‖+
‖g(f1(v))−x‖ = ‖g(f1(x))−g(f1(v))‖+‖v−x‖ ≤ D‖v−x‖+ε‖v‖ ≤ (D+1)ε‖v‖ ≤ 4Dε‖x‖ < 1

2‖x‖,
and gf1 ∼ idS follows.

Next, we set h := rSg, where rS is the retraction of R
d \ {0} onto S. It follows that hf1 ∼ idS

as well (compose the homotopy witnessing gf1 ∼ idS with rS). With such an h at our disposal, an
argument very similar to the proof of Theorem 2.1(ii) finishes the proof of the lemma. 2

Proof of Proposition 4.1. Let c be a point as in Lemma 4.3; for notational convenience, we
will assume that c = 0. Let Hi denote the hole of Σi that contains 0.

For a set X ⊆ R
d\{0}, let µ(X) denote the “spatial angle” of X as seen from 0, i.e., the fraction

of Sd−1 occupied by the central projection of X. We claim that if x 6= 0 and r ≤ 1
2‖x‖, then we

have µ(B(x, r)) ≤ r/‖x‖. Indeed, a simple projection argument shows that it is enough to deal
with the case d = 2, and this case follows easily with a bit of trigonometry.
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We claim that µ(fi(P )) ≤ 1
4 for all i. To check this, we use the assumption that the “puncture

set” P is ε-angularly small w.r.t. V : If rv are the radii as in the definition of “ε-angularly small”,
then fi(P ) ⊆ ⋃

v∈V B(fi(v),Drv), and thus

µ(fi(P )) ≤
∑

v∈V

Drv

‖fi(v)‖ .

Since 0 6∈ Ω, the definition of Ω gives ‖f1(v)‖ > 1
2‖v‖, and so ‖fi(v)‖ ≥ ‖f1(v)‖−‖f1(v)− fi(v)‖ ≥

1
2‖v‖ − 1

4‖v‖ = 1
4‖v‖. Then µ(fi(P )) ≤ 4D

∑

v∈V rv/‖v‖ ≤ 4Dε = 1
4 .

Now we are ready to prove that � is a linear ordering. We first look at two of the indices, say
i = 1 and j = 2, and show that either 1 � 2 or 2 � 1. Let U12 ⊆ U1 ∩ U2 denote the unbounded
component of R

d \ (Σ1 ∪ Σ2), and let H12 ⊆ H1 ∩ H2 be the hole of Σ1 ∪ Σ2 containing 0.
The boundary ∂U12 is contained in Σ1 ∪ Σ2, and we have µ(∂U12) = 1. It follows that ∂U

cannot be covered by f1(P ) ∪ f2(P ), and thus at least one of Σ∗
1 = f1(S \ P ) and Σ∗

2 = f2(S \ P )
is incident to ∂U12; let us suppose x ∈ Σ∗

2 ∩ ∂U12, for example. Then, since Σ∗
2 ∩ Σ1 = ∅, we have

x ∈ U1, and since Σ∗
2 is path-connected, we obtain Σ∗

2 ⊂ U1. Hence 1 � 2.
By a similar argument, looking at ∂H12, we get that one of Σ∗

1 ⊂ H2 or Σ∗
2 ⊂ H1 holds, and

this shows that 1 � 2 and 2 � 1 cannot hold simultaneously.
It remains to verify transitivity of �. To this end, we consider three indices, say 1, 2, 3, and we

suppose 1 � 2 � 3. This means that Σ∗
2 ⊂ U1 and Σ∗

3 ⊂ U2. If we had 3 � 1 as well, then Σ∗
1 ⊂ U3.

So Σ∗
1 ∪ Σ∗

2 ∪ Σ∗
3 ⊂ U1 ∪ U2 ∪ U3. But a measure argument as above shows that at least one of Σ∗

1,
Σ∗

2, Σ∗
3 must appear on the boundary of the hole H123 of Σ1 ∪ Σ2 ∪ Σ3 that contains 0, but this is

impossible since H123 ⊆ H1 ∩ H2 ∩ H3, and the latter is disjoint from U1 ∪ U2 ∪ U3. This shows
that � is indeed a linear ordering on [n].

It remains to verify the assertion that � doesn’t depend on the behavior of the fi on the
puncture set P . Thus, let the f̃i be as in the proposition. We can replace the fi by the f̃i gradually
one by one (since the already proved part of the proposition applies to f1, f2, . . . , fi, f̃i+1, . . . , f̃n

and shows that they induce some linear ordering), and thus it suffices to consider f1, f2, and f̃2

and show that 1 � 2 iff 1 �′ 2, where �′ is the relation induced by f1 and f̃2.
First, if 1 � 2, then Σ∗

2 lies in the unbounded component of R
d \ Σ1, and hence 1 �′ 2 by

definition. Second, if 2 � 1, then as shown above, Σ∗
2 is contained in a hole of Σ1, and this means

2 �′ 1. The proposition is proved. 2

5 Stronger inapproximability for dimension 3: a warm-up

In this section we present a simple reduction, which provides an inapproximability result weaker
than Theorem 1.2: in that theorem, we claim the hardness of distinguishing between O(1)-embeddability
and nconst/d-embeddability, while here we show hardness of distinguishing between nε-embeddability
(ε > 0 arbitrary but fixed) and nconst/d-embeddability.

We will use an algorithmic problem called BETWEENNESS, which is NP-complete according
to Opatrny [24] (the beautiful reduction of 3-SAT to this problem is also reproduced in [10]). An
instance of BETWEENNESS is a set T of triples of the form (i, j, k), i, j, k ∈ [n], and the problem
is to decide whether T is consistent, i.e., whether there exists a linear ordering � of [n] for which i
is between j and k for every (i, j, k) ∈ T (that is, either j � i � k or k � i � j).

It will be more convenient to reduce to NON-BETWEENNESS, whose instance has the same
form as for BETWEENNESS but the meaning of (i, j, k) is now “i must not be between j and k”.
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Each constraint (i, j, k) in BETWEENNESS can be equivalently replaced by the two constraints
(j, i, k) and (k, i, j) in NON-BETWEENNESS, and so NON-BETWEENNESS is NP-complete as
well.

The reduction. Let d ≥ 3 be fixed. Given an instance T of NON-BETWEENNESS for n
elements and a bound D for distortion, we construct a metric space Y = (Y, ρY ), with |Y | ≤
(nD)O(d), such that:

• If T is consistent, then Y is O(n)-embeddable in R
d.

• If T is not consistent, then Y is not D-embeddable in R
d.

Setting D = nC for a large constant C, we get that it is NP-hard to distinguish between O(n)-
embeddability and nC-embeddability of Y (and the size of Y is of order nC0Cd for an absolute
constant C0).

We fix suitable parameters ε ≪ 1 ≪ R, with ε sufficiently small and R sufficiently large in
terms of n and D, and we let S be a (d − 1)-dimensional sphere of radius R. We let V be an
ε-dense set in S, and similar to the example following Proposition 4.1, we set Y0 := [n] × V and
ρY0

((i, v), (i′, v′)) = ‖v − v′‖ + δii′ . We will refer to the set {i} × V as the ith layer. Next, we will
modify (Y0, ρY0

) to obtain Y; this modification reflects the structure of T .
We choose |T | distinct points on V , sufficiently far from one another, corresponding to the

triples in T . We will call these points the loci.
Let (i, j, k) ∈ T and let v = v(i,j,k) ∈ V be the corresponding locus. We modify the metric space

(Y0, ρY0
) near v as follows:

• We make a puncture of radius 1 in each of the layers except for the ith, jth, and kth. That
is, we remove from Y0 all points (ℓ, u) with ℓ 6∈ {i, j, k} and ‖u − v‖ ≤ 1.

• We connect the jth and kth layers by a (discrete) path πv,j,k of length 1. Namely, we set
t = ⌊1/ε⌋, we consider a graph-theoretic path on vertices p0, p1, . . . , pt with edges of length 1/t,
and we glue this path to Y0 by identifying p0 with (j, v) and pt with (k, v) (while p1, . . . , pt−1

are new points).

Having made this modification for every triple of T , we call the resulting metric space Y = (Y, ρY ).

Embeddability for consistent instances. We assume that T is consistent and, for notational
convenience, that a linear ordering obeying all the constraints is the natural ordering ≤. Then we
embed Y in R

d as sketched in Fig. 5 (the picture is 2-dimensional although the actual embedding
is in dimension 3 or higher). The ith layer is mapped isometrically to the sphere of radius R + i
centered at 0, and the connecting paths πv,j,k are embedded on straight segments that pass through
the punctures in the other layers. Clearly, this embedding incurs distortion O(n).

D-embeddability implies consistency. Next, let g be an arbitrary D-embedding of Y into
R

d, which we assume to be noncontracting. We let gi:V → R
d be the corresponding D-embedding

of the ith layer, and let gi be a D-Lipschitz extension of gi on S.
For applying Proposition 4.1, we need to define the “puncture set” P in such a way that gi(S\P )

is guaranteed to be disjoint from gj(S), j 6= i. Since the punctures in the construction of Y have
diameter 2 and each gi is D-Lipschitz, it suffices to choose P ⊆ S as the union balls of radius 3D
centered at all the loci (and intersected with S).

15



(4, 1, 2)
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Figure 5: Embedding for a consistent instance (n = 4, T = {(3, 1, 2), (4, 1, 2), (4, 1, 3), (2, 3, 4),
(1, 3, 4)}).

If R is sufficiently large in terms of D, then the complement S \ P is connected; this is the
moment in the proof where we need the assumption d ≥ 3 (since if we puncture 1-dimensional
sphere more than once, it falls apart!). For metric reasons, we then have Σi ∩ Σ∗

j = ∅ for i 6= j,
where Σi := gi(S), Σ∗

i := gi(S\P ). It is straightforward to verify the assumptions of Proposition 4.1
with fi = gi (we note that V here and in the proposition are the same, but the ε in the proposition,
equal to 1

16D , need not be the same).
We thus conclude that the images gi(S) are nested in the sense of Proposition 4.1, and we claim

that the corresponding linear ordering � of [n] is consistent for T . Indeed, for contradiction let us
suppose that (i, j, k) ∈ T but j � i � k, say. Then Σ∗

k is contained in the unbounded component
of Σi, while Σ∗

j lies in a hole of Σi.
If v is the locus of (i, j, k), then none of the layers i, j, k has a puncture near v, and thus for

metric reasons, Σj, Σi, and Σk do not intersect in the 3D-neighborhood of gi(v). It follows that
gj(v) lies in the same connected component of R

d \ Σi as Σ∗
j , i.e., in a hole, while gk(v) is in the

unbounded component.
We now consider the image under g of the discrete path πv,j,k in Y, and we extend this image

by segments to a continuous path γ connecting gj(v) and gk(v). Then γ intersects Σi at a point x.
On γ we can find a point g(p) at distance at most Dε from x, where p ∈ πv,j,k, and in Σi there is
a point of the form g(i, u), u ∈ V , also at distance at most Dε from x. But ρY ((i, u), p) ≥ 1, and
so 2Dε ≥ 1 since g was assumed noncontracting—a contradiction for ε sufficiently small. 2

6 Proof of Theorem 1.2

Here we present a different reduction of NON-BETWEENNESS to approximate embeddability
in R

d, in which consistent instances yield O(1)-embeddability. The main idea is similar to the
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previous reduction: the linear ordering in NON-BETWEENNESS is encoded in nesting of suitable
“discretized surfaces”. The source of the Ω(n) distortion in the previous reduction was the nesting
of all the surfaces at the same time.

Here we will allow simultaneous nesting of only at most 3 surfaces at a time. The surfaces won’t
be simply spheres, though, but rather each of them will resemble a network of branching pipes. We
begin with a simple graph-theoretic lemma.

Lemma 6.1 For every natural number n there is a graph G of size polynomial in n and subgraphs
G1, G2, . . . , Gn of G such that

• Each Gi, as well as each Gi ∩ Gj , is a connected subgraph of G.

• No vertex of G belongs to more than 3 of the Gi.

• For every unordered triple {i, j, k}, there is a vertex aijk ∈ V (Gi) ∩ V (Gj) ∩ V (Gk).

Proof. The vertex set of G can be taken as
([n]

2

)

∪
([n]

3

)

(all 2-element and 3-element subsets of
[n]), and the edges are of the form {{i, j}, {i, j, k}}, i, j, k all distinct. We let Gi be the subgraph
induced by the set of all S ∈ V (G) with i ∈ S. Verifying the required properties is immediate. 2

The construction. Let d ≥ 3 be fixed. Given an instance T of NON-BETWEENNESS for n
elements and a parameter D representing maximum distortion, we first construct an initial metric
space Y0 that depends only on n and D.

We choose parameters ε ≪ 1 ≪ Redge ≪ Rvert (polynomially depending on n and D, with the
degree of the polynomial independent of d). We fix an embedding of the graph G as in Lemma 6.1
into R

d, where vertices are represented by points and edges by straight segments. We assume
that the minimum edge length is sufficiently large compared to Rvert, the maximum edge length is
bounded by Rvert times a polynomial in n, the minimum distance of every two vertex-disjoint edges
is much larger than Redge, and that the minimum angle of two edges sharing a vertex is bounded
below by an inverse polynomial in n.

We now “fatten” the embedded G: We replace each vertex a ∈ V (G) by a ball Ba of radius
Rvert and each edge e by a cylinder Ce of radius Redge. We choose an ε-dense set V in the boundary
of the resulting solid (the union of all Ba and all Ce). We let Va := V ∩ ∂Ba and Ve := V ∩ ∂Ce,
and for i ∈ [n]

Vi :=

(

⋃

e∈E(Gi)

Ve

)

∪
(

⋃

a∈V (Gi)

Va

)

,

where the Gi are the subgraphs as in Lemma 6.1. The metric space Y0 = (Y0, ρY0
) is given by

Y0 = {(i, v) : i ∈ [n], v ∈ Vi}
ρY0

((i, v), (i′ , v′)) = ‖v − v′‖ + δii′ .

The ith layer of Y0 is {i} × Vi.
Now for every triple (i, j, k) ∈ T , we choose a point v ∈ Vaijk

, not too close to any Ve, and we
connect the points (j, v) and (k, v) by a discrete path of length 1 with spacing ε. (Since the vertices
aijk are indexed by unordered triples, while the triples in T are ordered, we may need several such
paths for a single vertex.) Adding such paths for all triples in T yields the metric space Y.
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Figure 6: An embedding for a consistent instance.

Consistent instances. If T is consistent, it is easy to embed Y in R
d with distortion O(1).

Rather than trying to formalize this, we refer to Fig. 6 for a (misleadingly planar) sketch for n = 4,
with T the same as in Fig. 5 (for n = 4, the graph G can be taken very simple, as a K4, with each
Gi a triangle).

D-embeddability implies consistency. We consider a noncontracting D-embedding g:Y →
R

d. Using Proposition 4.1 as in Section 5, we get that for each vertex a of G the embedding defines
a linear ordering of at most 3 layers present at a, and similarly for each edge of G.

Next, we check that these orderings are locally consistent between a vertex a and the adjacent
edges.

Lemma 6.2 Let �a be the linear ordering of the layers present at a vertex a, and let �e be the
linear ordering of the layers at an edge e incident to a. If layers i and j are present both at a and
at e, then i �a j iff i �e j.

Proof. For notational convenience we will consider i = 1 and j = 2.
We consider three punctured pseudospheres: Sa := ∂Ba, Se := ∂Ce, Sae := ∂(Ba ∪ Ce). The

puncture sets Pa, Pe, Pae are defined as expected: Pa ⊂ Sa is the union of suitable neighborhoods
of the cylinders Ce′ for all edges e′ incident to a, Pe ⊂ Se consists of suitable neighborhoods of the
top and bottom sides of the cylinder Ce, and Pae ⊂ Sae is Pa ∪ Pe minus the parts of Pe and Pa

surrounding the place where Ce touches Ba; see Fig. 7.
We consider the restriction gi of the embedding g:Y → R

d to the ith layer, i = 1, 2. We fix
a D-Lipschitz map gi,a:Sa → R

d that coincides with gi on Va, and similarly for gi,e and gi,ae;
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0
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Figure 7: The ball Ba and the cylinders adjacent to it (left); the punctured pseudospheres Sa, Se, Sae

(right); puncture sets indicated by a thick line.

0

Sk

0

Sk+1

Figure 8: Two consecutive punctured pseudospheres Sk and Sk+1.

moreover, we make sure that gi,a and gi,e coincide with gi,ae on the shared parts of the domains (to
this end, we can first extend gi to all of Sa ∪ Se and then take gi,a, gi,e, and gi,ae to be restrictions
of this common extension).

The relation �a is determined by the nesting of the images Σi,a := gi,a(Sa), and similarly for
�e. Instead of relating �a and �e directly, we relate both of them to �ae, which is the relation
defined by the nesting of Σ1,ae and Σ2,ae.

Let us first show that �a and �ae are the same. We will use the last part of Proposition 4.1,
which tells us that the nesting relation doesn’t depend on the behavior of the considered maps on
the puncture set, and also the freedom to choose the puncture set.

We define a sequence of punctured pseudospheres S0 = Sa, S1, . . . , St = Sae that interpolate
between Sa and Sae: We start with the sphere Sa, and we gradually “grow” an attached cylinder
from it, as in Fig. 8. The puncture sets Pk are as indicated in the picture.

We let gi,k:Sk → R
d be a suitable D-Lipschitz map that coincides with gi,ae on the common

part of their domain (where gi,0 = gi,a and gi,t = gi,ae). Let Σi,k := gi,k(Sk).
For each k = 0, 1, . . . , t, we thus get a “nesting” relation �k. If �a and �ae were not the same,

we would get that for some k, �k is different from �k+1.
To see that this is impossible, we choose a 1-Lipschitz map h:Sk+1 → Sk that is the identity

map on Sk+1 ∩ Sk (we just contract a piece of the lateral surface of the cylinder Ce). Then we
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define g′i:Sk+1 → R
d as the composition gi,kh.

On the one hand, if we use Proposition 4.1 with Sk+1 as the pseudosphere S, Pk+1 as the
puncture set P , gi,k+1 as fi, i = 1, 2, and g′i as f̃i, i = 1, 2, we get that the nesting relation �′

determined by g′1 and g′2 coincides with �k+1, since gi,k+1 agrees with g′i outside the puncture set.
On the other hand, the nesting relation depends solely on the images of the considered maps.

In our case we have g′i(Sk+1) = Σi,k = gi,k(Sk), i = 1, 2. For the images of the “non-puncture sets”
we have the inclusion Σ∗

i,k = gi,k(Sk \ Pk) ⊆ g′i(Sk+1 \ Pk+1), and the latter set is path-connected.
Therefore, considering the way the nesting relation is defined in Proposition 4.1, we get that �′

also coincides with �k. In conclusion, �a is the same as �ae.
It remains to show that �e and �ae are also the same. We proceed similarly, but this time a

single step is actually sufficient. We consider yet another punctured pseudosphere Sea, which is
Sae translated so that the origin is in the middle of the cylinder Ce (as in Se). The puncture set
Pea of Sea includes the appropriately translated copy of Pae plus all the spherical part of Sea (we
take advantage of the fact that the spherical part is angularly small in Sea, provided that Ce is
sufficiently long compared to the radius of Sa).

The map gi,ea is defined on Sea in the same way as gi,ae on Sae (the only difference is the
translation of the domain). The nesting relation �ea obtained from these maps is the same as �ae

(since the images are the same, up to an enlargement of the puncture set).
The argument showing that �ea coincides with �e is then almost the same as the one above

for �k and �k+1, using a suitable 1-Lipschitz map h′:Sea → Se that collapses the spherical part of
Sea. This concludes the proof of the lemma. 2

By Lemma 6.2, and since each Gi ∩Gj is connected and nonempty, the local linear orderings at
the vertices consistently define a relation � on [n] such that for each i 6= j, exactly one of i � j and
j � i holds. Since every three indices meet at a vertex of G, � is also transitive and thus a linear
ordering. Finally, as in Section 5, the paths in Y make sure that � obeys all constraints in T .

It is not hard to see that Redge, Rvert, 1/ε can be bounded by a fixed polynomial in n and D, of
degree independent of d, and thus |Y | = O((nD)Bd) for some universal constant B. This concludes
the proof of Theorem 1.2. 2

7 No Menger-type lemma for low-distortion planar embeddings

Here we prove Theorem 1.3. We set w := c1
√

ε/k for a sufficiently small constant c1 > 0. To
construct X = (X, ρX), we consider a drawing of the graph K3,3 (any other fixed nonplanar graph
would do) as in the left part of Fig. 9 (here w determines the width of the oval-shaped strip).

We place the n points of X on the edges as indicated, with a regular spacing of const/n. The
distances under ρX are given by the Euclidean distances of the points in the considered drawing,
except for the points p1, . . . , pm, q1, . . . , qm that fall in the dotted rectangle (m is a fixed fraction
of n). The distance of each pi or qi to a point outside the dotted rectangle is still the Euclidean
distance in the drawing, but ρX(pi, qj) is given by the Euclidean distances in the planar point
configuration shown in Fig. 9 right, where the pi are placed on the top side of a rectangle of height
w and the qi on the bottom side.

Arguing as in [20], we can easily check that any embedding of X in the plane requires distortion
Ω(nw) = Ω(

√
εn/k). Indeed, given a D-Lipschitz noncontracting mapping f :X → R

2, we extend
it to a drawing of K3,3 by connecting the images of the points of X by straight segments. In every
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Figure 9: The construction for the proof of Theorem 1.3.
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pmq1

qmpi0−1

qi0−1 pi0+t

qi0+t

Figure 10: Embedding a k-point subspace in Theorem 1.3.

drawing of K3,3, there are two vertex-disjoint edges e, e′ that cross. At distance at most O(D/n)
from the crossing we find images of two points x, x′ ∈ X, x on e and x′ on e′. However, we have
ρX(x, x′) ≥ w, and thus D = Ω(nw) as claimed.

Next, let Y be a k-point subspace of X. Then there is an i0 such that none of pi0, qi0, pi0+1,
qi0+1,. . . , pi0+t−1, qi0+t−1 falls in Y, where t = Ω(n/k). We embed Y as in Fig. 10. A simple
calculation shows that the distortion of distances among the pi and qi is 1 + O((wn/t)2) ≤ 1 + ε,
while the distortion of distances involving some pi or qi and some other point is O(1 + w) ≤ 1 + ε.

2

Remarks. A similar example, with correspondingly weaker parameters, can be constructed
for embeddings in R

d for every fixed d ≥ 2, using the Van Kampen–Flores simplicial complexes
nonembeddable in R

d (as in [20]) in place of K3,3. The details are somewhat technical and there is
no substantial new idea involved, so we prefer to omit this part.

Another natural question is, whether an “approximate Menger lemma” for embedding in the
plane might hold for some interesting subclass of all metric spaces. Since the construction in the
proof of Theorem 1.3 is based on a nonplanar graph, a natural class of interest are planar-graph
metrics.9

For planar-graph metrics we have the following weaker analogy of Theorem 1.3: For all n,

9A metric space (X, ρX) s a planar-graph metric if there is a planar graph G = (V, E) with positive real weights
on edges such that X ⊆ V and ρX is given by the shortest-path metric of G.
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Figure 11: A construction for planar-graph metrics.

there are planar-graph metrics on O(n) vertices whose embedding in R
2 requires distortion Ω(

√
n),

while all subspaces on at most
√

n points embed with distortion O(1) (we don’t get 1 + ε as in
Theorem 1.3, since planar-graph metrics usually don’t embed almost isometrically in the Euclidean
plane).

The construction is based on an idea from Bateni et al. [3] (in a simplified form); see Fig. 11.
The metric space X is the vertex set of the depicted graph with the shortest-path metric. The edges
drawn with a single line have length 1 and the edges drawn with a double line have length n−1/2.

The reason for bad embeddability in the plane is as follows. The graph is essentially a subdivision
of K4 with a long path attached to each vertex. A low-distortion embedding of X in the plane yields
a drawing of K4 where vertex-disjoint edges don’t cross, and in any such drawing of K4 there is a
vertex that is not incident to the outer face. Then the path attached to such a vertex doesn’t have
enough room in the inner face. The details are similar to an argument in [3] and we omit them. It
is also easy to see that if we consider a subspace of

√
n points, then there is a gap in the “ladder”

in the bottom part of the graph of length Ω(
√

n), and using such a gap, the path attached to the
central vertex can cross to the outer face, which yields an O(1)-embedding.
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