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Metric spaces

Metric space M=(X,D)

• Positive definiteness

D(p,q) = 0  iff p = q

• Symmetry

D(p,q) = D(q,p)

• Triangle inequality

D(p,q) ≤ D(p,r) + D(r,q)
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Metric spaces

Euclidean Spaces

Metric Spaces
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Metric embeddings

Finite Metric 
Spaces

n-point

Euclidean 
Spaces

[Bourgain ’85+

O(log n)
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Metric embeddings

• Given spaces M=(X,D), M’=(X’,D’)

• Mapping f:X→X’

• Distortion c if:

D(x1,x2) ≤ D’(f(x1),f(x2)) ≤ c∙D(x1,x2)

5



Motivation

• Geometric interpretation

• Succinct data representation

– Embedding into low-
dimensional spaces

• Visualization

– Embedding into the plane

– Multi-dimensional scaling

• Optimization

– Embedding into “easy” spaces
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Known results

Host space Distortion Citation

O(log n) –dimensional L2

(also true for Lp)
O(log n) [Bourgain ’85+, [Johnson-

Lindenstrauss], [Alon], [Linial, 
London, Rabinovich ’94+, 
[Abraham, Bartal, Neiman ‘06+

d-dimensional L2 Õ (nconst/d) [Matousek ’90+
Also: [Gupta ‘99+, *Babilon, 
Matousek, Maxova, Valtr
2003], [Badoiu, Chuzhoy, 
Indyk, S ‘06+, *Bateni, 
Demaine, Hajiaghayi, 
Moharrami 2007]

Random projection is optimal in the worst case!
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Random projection
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Absolute vs. Relative embeddings

• Small dimension → high distortion  (nΩ(1/d))

– E.g. embedding a cycle into the line

• What if a particular metric embeds with small 
distortion?

• Computational problem:

Approximate best possible distortion
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Known results on approximation
• Into R1

– Unweighted graphs: n1/2-approx, 1.01-hard *BDGRRRS ‘05+

– Trees: n1-a-approx, nb-hard [Badoiu, Chuzhoy, Indyk, S ‘05+

– General metrics: (OPT∙logn)O(√logΔ) *Badoiu,Indyk,S‘07+

• Into Rd

– Ultrametrics: log6Δ-approx, NP-hard [Badoiu, Chuzhoy, 
Indyk, S ‘06+, *Onak, S ‘08+

– General metrics: Õ (n2/d) worst case [Matousek ‘90+ 

Ω(n1/22d)-hard [Matousek, S ‘08+
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Random projection is a near-optimal approximation 
algorithm for general metrics (unless P=NP)!



Reduction outline
Embedding into R1 →  Embedding into Rd
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Theorem [Badoiu, Chuzhoy, Indyk, S ‘05+
Embedding into R1 is NP-hard to approximate
within n1/12

Theorem
For d ≥ 2,
embedding into Rd is NP-hard to approximate
within n1/22d



Reduction outline
Reduction from embedding into R1
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Product 
with Sd-1

M → R1 iff M’  → Rdc O(c)



Reduction outline (easy direction)

R1

product

Rd



Reduction outline (hard direction)
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Rd

R1

product

ordering



Nesting lemma

f1, f2 : Sd-1 → Rd continuous

• Non-intersecting

• |fi(x)-fi(y)| > |x-y| - ε 

• |f1(x)-f2(x)| < ε 
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One sphere is
“inside” the other!

Ideas from [Vaisala ‘08+



Proof of nesting lemma: Techniques
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continuous functions

homomorphisms

Cohomology

topological spaces

(d-1)-dimensional cohomology groups

Alexander duality

0-dimensional homology groups

discrete embeddings

Extension

discrete spaces



What if OPT=O(1)?

• It is NP-hard to distinguish between metrics 
that embed into Rd with distortion 

na/d vs nb/d (a<b)
• Can we distinguish between

O(1)    vs nb/d ? 
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NO! (for d ≥ 3)



Improved reduction for d ≥ 3



Further directions

• Intriguing open problem:

Embedding into Rd, d ≤ 2.

Is there an algorithm achieving distortion 
OPTO(1)?

• Minimize the dimension.
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