# Inapproximability for metric embeddings into R<sup>d</sup>

Jiri Matousek (Charles University)
Anastasios Sidiropoulos (U. of Toronto)

## Metric spaces

#### Metric space M=(X,D)

- Positive definiteness
  - D(p,q) = 0 iff p = q
- Symmetry

$$D(p,q) = D(q,p)$$

Triangle inequality

$$D(p,q) \leq D(p,r) + D(r,q)$$



# Metric spaces



# Metric embeddings

[Bourgain '85]



## Metric embeddings

- Given spaces M=(X,D), M'=(X',D')
- Mapping f:X→X'
- Distortion c if:

$$D(x_1,x_2) \le D'(f(x_1),f(x_2)) \le c \cdot D(x_1,x_2)$$



#### Motivation

- Geometric interpretation
- Succinct data representation
  - Embedding into lowdimensional spaces
- Visualization
  - Embedding into the plane
  - Multi-dimensional scaling
- Optimization
  - Embedding into "easy" spaces



#### Known results

| Host space                                         | Distortion                | Citation                                                                                                                                                  |
|----------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| O(log n) –dimensional $L_2$ (also true for $L_p$ ) | O(log n)                  | [Bourgain '85], [Johnson-<br>Lindenstrauss], [Alon], [Linial,<br>London, Rabinovich '94],<br>[Abraham, Bartal, Neiman '06]                                |
| d-dimensional L <sub>2</sub>                       | Õ (n <sup>const/d</sup> ) | [Matousek '90] Also: [Gupta '99], [Babilon, Matousek, Maxova, Valtr 2003], [Badoiu, Chuzhoy, Indyk, S '06], [Bateni, Demaine, Hajiaghayi, Moharrami 2007] |

Random projection is optimal in the worst case!

# Random projection



## Absolute vs. Relative embeddings

- Small dimension  $\rightarrow$  high distortion  $(n^{\Omega(1/d)})$ 
  - E.g. embedding a cycle into the line
- What if a particular metric embeds with small distortion?
- Computational problem:

Approximate best possible distortion

## Known results on approximation

- Into R<sup>1</sup>
  - Unweighted graphs: n<sup>1/2</sup>-approx, 1.01-hard [BDGRRRS '05]
  - Trees: n<sup>1-a</sup>-approx, n<sup>b</sup>-hard [Badoiu, Chuzhoy, Indyk, S '05]
  - General metrics: (OPT·logn)<sup>O(√log∆)</sup> [Badoiu,Indyk,S'07]
- Into R<sup>d</sup>
  - Ultrametrics:  $log^6\Delta$ -approx, NP-hard [Badoiu, Chuzhoy, Indyk, S '06], [Onak, S '08]
  - General metrics:  $\tilde{O}$  (n<sup>2/d</sup>) worst case [Matousek '90]  $\Omega(n^{1/22d})$ -hard [Matousek, S '08]

Random projection is a near-optimal approximation algorithm for general metrics (unless P=NP)!

#### Reduction outline

Embedding into R¹ → Embedding into R<sup>d</sup>

**Theorem** [Badoiu, Chuzhoy, Indyk, S '05] Embedding into  $R^1$  is NP-hard to approximate within  $n^{1/12}$ 



#### **Theorem**

For  $d \ge 2$ , embedding into  $R^d$  is NP-hard to approximate within  $n^{1/22d}$ 

#### Reduction outline

Reduction from embedding into R<sup>1</sup>



# Reduction outline (easy direction)



# Reduction outline (hard direction)



## Nesting lemma

$$f_1, f_2: S^{d-1} \rightarrow R^d$$
 continuous

- Non-intersecting
- |f<sub>i</sub>(x)-f<sub>i</sub>(y)| > |x-y| ε
   |f<sub>1</sub>(x)-f<sub>2</sub>(x)| < ε</li>



One sphere is "inside" the other!

Ideas from [Vaisala '08]



### Proof of nesting lemma: Techniques



# What if OPT=O(1)?

 It is NP-hard to distinguish between metrics that embed into R<sup>d</sup> with distortion

$$n^{a/d}$$
 vs  $n^{b/d}$  (a

Can we distinguish between

$$O(1)$$
 vs  $n^{b/d}$ ?

NO! (for 
$$d \ge 3$$
)

# Improved reduction for $d \ge 3$



#### Further directions

Intriguing open problem:

Embedding into  $R^d$ ,  $d \le 2$ .

Is there an algorithm achieving distortion OPT<sup>O(1)</sup>?

Minimize the dimension.