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Abstract

We present several approximation algorithms for the problem of embedding met-
ric spaces into a line, and into the two-dimensional plane. We give an O(

√
n)-

approximation algorithm for the problem of finding a line embedding of a metric
induced by a given unweighted graph, that minimizes the (standard) multiplicative
distortion. For the same problem, we give an exact algorithm, with running-time ex-
ponential in the distortion. We complement these results by showing that the problem
is NP-hard to α-approximate, for some constant α > 1.

For the two-dimensional case, we show a O(
√

n) upper bound for the distortion
required to embed an n-point subset of the two-dimensional sphere, into the plane.
We prove that this bound is asymptotically tight, by exhibiting n-point subsets such
that any embedding into the plane has distortion Ω(

√
n). These techniques yield a

O(1)-approximation algorithm for the problem of embedding an n-point subset of the
sphere into the plane.

Thesis Supervisor: Piotr Indyk
Title: Associate Professor
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Chapter 1

Introduction

Embedding distance matrices into geometric spaces (most notably, into low-dimensional

spaces) is a fundamental problem occurring in many applications. In the context of

data visualization, this approach allows the user to observe the structure of the data

set and discover its interesting properties. In computational chemistry, this approach

is used to recreate the geometric structure of the data from the distance information.

The problem is of interest in many other areas, see [24] for a discussion.

The methods for computing such embeddings have their roots in work going back

to the first half of the 20th century, and in the more recent work of Shepard [22, 23],

Kruskal [15, 16], and others. The area is usually called Multi-dimensional Scaling

(MDS) and is a subject of extensive research [24]. However, despite significant

practical interest, few theoretical results exist in this area (see Related Work). The

most commonly used algorithms are heuristic (e.g., gradient-based method, simulated

annealing, etc) and are often not satisfactory in terms of the running time and/or

quality of the embeddings.

In this paper we present algorithms for the following fundamental embedding prob-

lem: given a graph G = (V, E) inducing a shortest path metric M = M(G) = (V, D),

find a mapping f of V into a line that is non-contracting (i.e., |f(u)−f(v)| ≥ D(u, v)

for all u, v ∈ V ) and minimizes the distortion cline(M, f) = maxu,v∈V
|f(u)−f(v)|

D(u,v)
. That

is, our goal is to find cline(M) = minf cline(M, f). For the case when G is an un-

weighted graph, we show the following algorithms for this problem (denote n = |V |):
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• A polynomial (in fact, O(n3c)-time) c-approximation algorithm for metrics M

for which cline(M) ≤ c. This also implies an O(
√

n)-approximation algorithm

for any M (Chapter 2).

• An exact algorithm, with running time nO(cline(M)) (Chapter 3).

We complement our algorithmic results by showing that a-approximating the value

of cline(M) is NP-hard for certain a > 1 in Chapter 4. In particular, this justifies

the exponential dependence on cline(M) in the running time bound for the exact

algorithm.

We also study the problem of embedding metrics into the plane in Chapter 5. In

particular, we focus on embedding metrics M = (X, D) which are induced by a set of

points in a unit sphere S2. Embedding such metrics is important, e.g., for the purpose

of visualizing point-sets representing places on Earth or other planets, on a (planar)

computer screen.1 In general, we show that an n-point spherical metric can be em-

bedded with distortion O(
√

n), and this bound is optimal in the worst case. (The

lower bound is shown by resorting to the Borsuk-Ulam theorem [3], which roughly

states that any continuous mapping from S2 into the plane maps two antipodes of S2

into the same point.) For the algorithmic problem of embedding M into the plane,

we give a 3.512-approximation algorithm, when D is Euclidean distance in R3.

1.1 Related work

1.1.1 Combinatorial vs Algorithmic Problem.

The problem of finding low-distortion embeddings of metrics into geometric spaces

has been long a subject of extensive mathematical studies. During the last few years,

such embeddings found multiple and diverse uses in computer science as well; many

such applications have been surveyed in [11]. However, the problems addressed in

this paper are fundamentally different from those investigated in the aforementioned

1Indeed, the whole field of cartography is devoted to low-distortion representations of spherical
maps into the plane.
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literature. In a nutshell, our problems are algorithmic, as opposed to combinatorial.

More specifically, we are interested in finding the best distortion embedding of a given

metric (which is an algorithmic problem) as opposed to the best distortion embedding

for a class of metrics (which is a combinatorial problem). Thus, we define the quality

of an embedding algorithm as the worst-case ratio of the distortion obtained by the

algorithm to the best achievable distortion. In contrast, the combinatorial approach

focuses on providing the worst-case upper bounds for the distortion itself. Thus, the

problems are fundamentally different, which raises new interesting issues.

Despite the differences, we mention two combinatorial results that are relevant in

our context. The first one is the [18] adaptation of Bourgain’s construction [4] that

enables embedding of an arbitrary metric into l
O(log2 n)
2 with maximum multiplicative

distortion O(log n). It should be noted, however, that for the applications mentioned

earlier, the most interesting spaces happen to be low-dimensional. Similarly, any

metric can be embedded into d-dimensional Euclidean space with multiplicative dis-

tortion O(min[n
2
d log3/2 n, n]) and no better than Ω(n1/b(d+1)/2c) [20]. However, the

worst-case guarantees are rather large for small d, especially for the case d = 1 that

we consider here.

1.1.2 Previous Work on the Algorithmic Problem.

To our knowledge there have been few algorithmic embedding results. Hastad et

al. gave a 2-approximation algorithm for embedding an arbitrary metric into a line

R, when the maximum additive two-sided error was considered; that is, the goal was

to optimize the quantity maxu,v ||f(u)− f(v)| −D(u, v)|. They also showed that the

same problem cannot be approximated within 4/3 unless P = NP [10, 12]. Bădoiu

extended the algorithm to the 2-dimensional plane with maximum two-sided additive

error when the distances in the target plane are computed using the l1 norm [5].

Bădoiu, Indyk and Rabinovich [2] gave a weakly-quasi-polynomial time algorithm for

the same problem in the l2 norm.

Very recently, Kenyon, Rabani and Sinclair [13] gave exact algorithms for min-

imum (multiplicative) distortion embeddings of metrics onto simpler metrics (e.g.,

13



line metrics). Their algorithms work as long as the minimum distortion is small, e.g.,

constant. We note that constraining the embeddings to be onto (not into, as in our

case) is crucial for the correctness of their algorithms.

In general, one can choose non-geometric metric spaces to serve as the host space.

For example, in computational biology, approximating a matrix of distances between

different genetic sequences by an ultrametric or a tree metric allows one to retrace

the evolution path that led to formation of the genetic sequences. Motivated by these

applications M. Farach-Colton and S. Kannan show how to find an ultrametric T with

minimum possible maximum additive distortion [7]. There is also a 3-approximation

algorithm for the case of embedding arbitrary metrics into weighted tree metrics to

minimize the maximum additive two-sided error [1]. [6] recently gave an O(log1/p n)-

approximation for embedding arbitrary n-point metrics into the line to minimize the

`p norm of the two-sided error vector | |f(u)− f(v)| − D(u, v)|.

Distortion vs Bandwidth. In the context of unweighted graphs, the notion of

minimum distortion of an embedding into a line is closely related to the notion of a

graph bandwidth. Specifically, if the non-contraction constraint |f(u)−f(v)| ≥ D(u, v)

is replaced by a constraint |f(u) − f(v)| ≥ 1 for u 6= v, then c1(M(G)) becomes

precisely the same as the bandwidth of the graph G.

There are several algorithms that approximate the bandwidth of a graph [8, 9].

Unfortunately, they do not seem applicable in our setting, since they do not en-

force the non-contraction constraint for all node pairs. However, in the case of exact

algorithms the situation is quite different. In particular, our exact algorithm for com-

puting the distortion is based on the analogous algorithm for the bandwidth problem

by Saxe [21].

14



Chapter 2

A O(c)-Approximation Algorithm

In this chapter we present a O(c)-approximation algorithm for embedding the shortest-

path metric of an unweighted graph into the line, where c denotes that optimal dis-

tortion. That is, our algorithm outputs an embedding with distortion O(c2). By

combining this algorithm with the fact that c = O(n) for any input metric, we can

obtain a O(
√

n)-approximation algorithm.

2.1 Description of the Algorithm

We start by stating an algorithmic version of a fact proved in [19].

Lemma 1. Any shortest path metric over an unweighted graph G = (V, E) can be

embedded into a line with distortion at most 2n− 1 in time O(|V |+ |E|).

Proof. Let T be a spanning tree of the graph. We replace every (undirected) edge of

T with a pair of opposite directed edges. Since the resulting graph is Eulerian, we can

consider an Euler tour C in T . Starting from an arbitrary node, we embed the nodes

in T according to the order that they appear in C, ignoring multiple appearances

of a node, and preserving the distances in C. Clearly, the resulting embedding is

non-contracting, and since C has length 2n, the distortion is at most 2n− 1.

Note that the O(n) bound is tight, e.g. when G is a star, or a cycle.
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Let G = (V, E) be a graph, such that there exists an embedding of G with distor-

tion c. The algorithm for computing an embedding of distortion at most O(c2) is the

following:

1. Let fOPT be an optimal embedding of G (note that we just assume the existence

of such an embedding, without computing it). Guess nodes t1, t2 ∈ V , such that

fOPT (t1) = minv∈V fOPT (v), and fOPT (t2) = maxv∈V fOPT (v).

2. Compute the shortest path p = v1, v2, . . . , vL from t1 to t2.

3. Partition V into disjoint sets V1, V2, . . . VL, such that for each u ∈ Vi, D(u, vi) =

min1≤j≤L D(u, vj). Break ties so that each Vi is connected.

4. For i = 1 . . . L, compute a spanning tree Ti of the subgraph induced by Vi,

rooted at vi. Embed the nodes of Vi as in the proof of Lemma 1, leaving a space

of length |Vi|+ |Vi+1|+ 1 between the nodes of Vi and Vi+1.

2.2 Analysis

We will analyze the algorithm presented in the previous section. The first step is to

show that every set Vi has small diameter.

Lemma 2. For every i, 1 ≤ i ≤ L, and for every x ∈ Vi, we have D(vi, x) ≤ c/2.

Proof. Assume that the assertion is not true. That is, there exists vi, and x ∈ Vi,

such that D(x, vi) > c/2. Consider the optimal embedding fOPT . By the fact that v1

and vL are the left-most and right-most embedded nodes in the embedding fOPT , it

follows that there exists j, 1 ≤ j < L, such that fOPT (x) lies between fOPT (vj), and

fOPT (vj+1). W.l.o.g., assume that

fOPT (vj) < fOPT (x) < fOPT (vj+1).

16



Since x ∈ Vi, we have

|fOPT (vj+1)− fOPT (vj)| = fOPT (vj+1)− fOPT (x) + fOPT (x)− fOPT (vj)

≥ D(vj+1, x) + D(x, vj)

≥ 2D(x, vi)

> c.

This is a contradiction, since the expansion of fOPT is at most c.

We also need to bound the total size of c consecutive sets Vi.

Lemma 3. For every i, 1 ≤ i ≤ L− c + 1, we have
∑i+c−1

j=i |Vj| ≤ 2c2.

Proof. Assume that there exists i such that
∑i+c−1

j=i |Vj| > 2c2. Note that

max
i≤j1<j2≤i+c−1

|fOPT (vj1)− fOPT (vj2)| ≤ c(c− 1).

Moreover, since
∑i+c−1

j=i |Vj| > 2c2, we have maxu,w∈
Si+c−1

j=i Vj
|fOPT (u) − fOPT (w)| ≥

2c2. It follows that there exists u ∈ Vl, for some l, with i ≤ l ≤ i + c − 1, such that

|fOPT (vl) − fOPT (u)| ≥ 2c2−c(c−1)
2

> c2/2. Since the expansion is at most c, we have

D(vl, u) > c/2, contradicting Lemma 2.

Lemma 4. The embedding computed by the algorithm is non-contracting.

Proof. Let x, y ∈ V . If x and y are in the same set Vi, for some i, then clearly

|f(x)− f(y)| ≥ D(x, y), since the distance between x and y produced by a traversal

of the spanning tree of the graph induced by Vi is at least the distance of x and y on

Ti, which is at least D(x, y).
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Assume now that x ∈ Vi and y ∈ Vj, for some i < j. We have

|f(y)− f(x)| ≥
j−1∑
t=i

(|Vt|+ |Vt+1|+ 1)

≥ |Vi|+ (j − i) + |Vj|

≥ D(x, vi) + D(vi, vj) + D(vj, y)

≥ D(x, y)

The next Lemma bounds the contraction of the embedding.

Lemma 5. The expansion of the embedding computed by the algorithm is at most

4c2.

Proof. It suffices to show that for each {x, y} ∈ E, |f(x) − f(y)| ≤ 4c2. Let x ∈ Vi,

and y ∈ Vj. If |i− j| ≤ 2c, then by Lemma 3 we obtain that |f(x)− f(y)| ≤ 4c2.

Assume now that there exist nodes x ∈ Vi and y ∈ Vj, with {x, y} ∈ E, and

|i − j| > 2c. By Lemma 2, we obtain that D(vi, x) ≤ c/2, and D(y, vj) ≤ c/2, and

thus |i− j| = D(vi, vj) ≤ c + 1, a contradiction.

Theorem 1. The described algorithm computes a non-contracting embedding of max-

imum distortion O(c2), in time O(n3c).

Proof. By Lemmata 4 and 5, it follows that the computed embedding is non-contracting

and has distortion at most O(c2). In the beginning of the algorithm, we compute all-

pairs shortest paths for the graph. Next, for each possible pair of nodes t1 and t2, the

described embedding can be computed in linear time. Thus, the total running time

is O(n2|E|) = O(n3c).

Theorem 2. There exists a O(
√

n)-approximation algorithm for the minimum dis-

tortion embedding problem.

Proof. If the optimal distortion c is at most
√

n, then the described algorithm com-

putes an embedding of distortion at most O(c
√

n). Otherwise, the algorithm de-

18
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Figure 2-1: A tight instance for the algorithm.

scribed in Lemma 1, computes an embedding of distortion O(n). Thus, by taking the

best of the above two embeddings, we obtain an O(
√

n)-approximation.

2.3 Tightness of the Analysis

Figure 2-1 depicts an instance which demonstrates that the above analysis is actually

tight, even for the case of trees. More specifically, the depicted tree can be optimally

embedded with distortion O(k). To see that, observe that there exist nodes of degree

O(k), thus this is indeed a lower bound for the optimal distortion. Furthermore, we

can achieve this bound by first embedding the left half of the long path, and then

interleaving the stars of size O(k) with the nodes of the right half of the long path,

thus achieving O(k) distortion. It is easy to see that the described algorithm will

embed (in left-to-right order) first the left half of the long path, then all the k stars

of size k, and finally the right half of the long path. This embedding yields distortion

O(k2).
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Chapter 3

A Dynamic Programming

Algorithm for Graphs of Small

Distortion

Given a connected simple graph G = (V, E) and an integer c, we consider the problem

of deciding whether there exists a non-contracting embedding of G into the integer

line with maximum distortion at most c.

Note that the maximum distance between any two points in an optimal embedding

can be at most c(n− 1), and there always exists an optimal embedding with all the

nodes embedded into integer coordinates. W.l.o.g., in the rest of this section, we will

only consider embeddings of the form f : V → {0, 1, . . . , c(n− 1)}. Furthermore, if G

admits an embedding of distortion c, then the maximum degree of G is at most 2c.

Thus, we may also assume that G has maximum degree 2c.

3.1 Definitions

The algorithm that we will describe is based on dynamic programming. More specif-

ically, the algorithm will compute a solution by augmenting carefully chosen partial

solutions. We will first define formally the notion of a partial solution.

21



Definition 1 (Partial Embedding). Let V ′ ⊆ V . A partial embedding on V ′ is a

function g : V ′ → {0, 1, . . . , c(n− 1)}.

Definition 2 (Feasible Partial Embedding). Let f be a partial embedding on V ′.

f is called feasible if there exists an embedding g of distortion at most c, such that for

each v ∈ V ′, we have g(v) = f(v), and for each u /∈ V ′, it is g(u) > maxw∈V ′ f(w).

Definition 3 (Plausible Partial Embedding). Let f be a partial embedding on

V ′. f is called plausible if

• For each u, v ∈ V ′, we have |f(u)− f(v)| ≥ D(u, v).

• For each u, v ∈ V ′, if {u, v} ∈ E, then |f(u)− f(v)| ≤ c.

• Let L = maxv∈V ′ f(v). For each u ∈ V ′, if f(u) ≤ L − c, then for each w ∈ V

such that {u, w} ∈ E, we have w ∈ V ′.

3.2 Some Technical Properties

We will now give some useful properties of the feasible and plausible embeddings

defined above.

Lemma 6. If a partial embedding is feasible, then it is also plausible.

Proof. Let f be a partial embedding over V ′, such that f is feasible, but not plausible,

and let L = maxv∈V ′ f(v). It follows that there exists {u, w} ∈ E, with u ∈ V ′, such

that f(u) ≤ L − c, and w /∈ V ′. Since f is feasible, there exists an embedding

g of distortion at most c, satisfying g(u) = f(u) ≤ L − c, and g(w) > L. Thus,

|g(u)− g(w)| > c, a contradiction.

Definition 4 (Active Region). Let f be a partial embedding over V ′. The ac-

tive region of f is a couple (X, Y ), where X = {(u1, f(u1)), . . . , (u|X|, f(u|X|))} is

a set of min{2c + 1, |V ′|} couples, where {u1, . . . , u|X|} is a subset of V ′, such that

f(ui) = maxu∈V ′\{ui+1,...,u|X|} f(u), and Y is the set of all edges in E having exactly

one endpoint in V ′.
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Lemma 7. Let f1 be a plausible partial embedding over V1, and f2 be a plausible

partial embedding over V2. If f1 and f2 have the same active region, then

• V1 = V2.

• f1 is feasible if and only if f2 is feasible.

Proof. Let L = maxv∈V ′ f(v). To prove that V1 ⊆ V2, assume that there exists

v ∈ V1 \ V2. Let p be a path starting at v, and terminating at some node in V1 ∩ V2,

and let v′′ be the first node in V1 ∩ V2 visited by p, and v′ be the node visited

exactly before v′′. Clearly, v′ ∈ V1 \ V2, and v′ is not in the active region, thus

f1(v
′) < L − 2c. Furthermore, by the definition of a plausible partial embedding,

since the edge {v′′, v′} has exactly one endpoint in V2, it follows that f2(v
′′) > L− c.

Thus, |f1(v
′)−f1(v

′′)| = |f1(v
′)−f2(v

′′)| > c, contradicting the fact that f1 is plausible.

Similarly we can show that V2 ⊆ V1, and thus V1 = V2.

Assume now that f1 is feasible, thus there exists an embedding g1 of distortion

at most c, such that for each v ∈ V1, we have f1(v) = g1(v), and for each v /∈ V1,

we have g1(v) > L. Consider the embedding g2, where g2(u) = f2(u), if u ∈ V2,

and g2(u) = g1(u) otherwise. It suffices to show that g2 is non-contracting and has

distortion at most c.

If g2 has distortion more than c, then since f2 is a plausible partial embedding,

and g1 has distortion at most c, it follows that there exists an edge {u, w}, with

u ∈ V2 and w /∈ V2, such that |g2(u)− g2(w)| > c. Since the edge {u, w} has exactly

one endpoint in V2, it follows that f2(u) > L − c, and thus u is in the active region,

and f2(u) = f1(u). Thus, we obtain that |g1(u) − g1(w)| = |g2(u) − g2(w)| > c, a

contradiction. Thus, g2 has distortion at most c, and f2 is feasible.

Lemma 8. For fixed values of c, the number of all possible active regions of all the

plausible partial embeddings is at most O(n4c+2).

Proof. Let f be a plausible partial embedding, with active region (X,Y ), such that

|X| = i. It is easy to see that every edge in Y has exactly one endpoint in X.

Since the degree of every node is at most 2c, after fixing X, the number of possible
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values for Y is at most 22ic. Also, the number of possible different values for X is at

most
(

n
i

)
(nc)i. Thus, the number of possible active regions for all plausible partial

embeddings is at most
∑2c+1

i=1

(
n
i

)
(nc)i22ic = O(n4c+2).

3.3 The Algorithm

Definition 5 (Successor of a Partial Embedding). Let f1 and f2 be plausible

partial embeddings on V1 and V2 respectively. f2 is a successor of f1 if and only if

• V2 = V1 ∪ {u}, for some u /∈ V1.

• For each u ∈ V1 ∩ V2, we have f1(u) = f2(u).

• If u ∈ V2 and u /∈ V1, then f2(u) = maxv∈V2 f2(v).

Let P be the set of all plausible partial embeddings, and let P̂ be the set of all

active regions of the embeddings in P . Consider a directed graph H with V (H) = P̂ .

For each x̂, ŷ ∈ V (H), (x̂, ŷ) ∈ E(H) if and only if there exist plausible embeddings

x, y, such that x̂ and ŷ are the active regions of x and y respectively, and y is a

successor of x.

Lemma 9. Let x0 be the active region of the empty partial embedding. G admits a

non-contracting embedding of distortion at most c, if and only if there exists a directed

path from x0 to some node x in H, such that x = (X, Y ), with X 6= ∅ and Y = ∅.

Proof. If there exists a path from x0 to some node x = (X, Y ), with X 6= ∅ and

Y = ∅, then since X 6= ∅, it follows that x is not the active region of the empty

partial embedding. Furthermore, since G is connected and Y = ∅, it follows that x is

the active region of a plausible embedding f of all the nodes of G. By the definition

of a plausible embedding, it follows that f is a non-contracting embedding of G with

distortion at most c.

If there exists a non-contracting embedding f of G, with distortion at most c,

then we can construct a path in H, visiting nodes y0, y1, . . . , y|V |, as follows: For each

i let fi be the partial embedding obtained from f by considering only the i leftmost
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embedded nodes, and let yi be the active region of fi. Clearly, each fi is a feasible

embedding, and thus by Lemma 6, it is also plausible. Moreover, y0 = x0, and for each

0 < i ≤ |V |, it is easy to see that fi is a successor of fi−1, and thus (yi−1, yi) ∈ E(H).

Since, f|V | is an embedding of all the nodes of G, the active region y|V | = (X|V |, Y|V |)

satisfies X|V | 6= ∅, and Y|V | = ∅.

Using Lemma 9, we can decide whether there exists an embedding of G as follows:

We begin at node x0, and we repeatedly traverse edges of H, without repeating nodes.

Note that we do not compute the whole H from the beginning, but we instead compute

only the neighbors of the current node. This is done as follows: At each step i, we

maintain a plausible partial embedding gi, such that each partial embedding induced

by the j leftmost embedded nodes in gi, has active region equal to the jth node in the

path from x0 to the current node. We consider all the plausible embeddings obtained

by adding a rightmost node in gi. The key property is that by Lemma 7, the active

regions of these embeddings are exactly the neighbors of the current node. This is

because an active region completely determines the subset of embedded nodes, as well

as the feasibility of such a plausible embedding. By Lemma 8, the above procedure

runs in polynomial time when c is fixed.

We have thus obtained the following Theorem.

Theorem 3. For any fixed integer c, we can compute in polynomial time a non-

contracting embedding of G, with distortion at most c, if one exists.
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Chapter 4

Hardness of Approximation

In this section we show that the problem of computing minimum distortion embedding

of unweighted graphs is NP-hard to a-approximate for certain a > 1. This is done by

a reduction from TSP over (1, 2)-metrics. Recall that the latter problem is NP-hard

to approximate up to some constant a > 1.

4.1 The Reduction

Recall that a metric M = (V, D) is a (1, 2)-metric, if for all u, v ∈ V , u 6= v, we have

D(u, v) ∈ {1, 2}. Let G(M) be a graph (V, E) where E contains all edges {u, v} such

that D(u, v) = 1.

The reduction F from the instances of TSP to the instances of the embedding

problem is as follows. For a (1, 2)-metric M , we first compute G = (V, E) = G(M).

Then we construct a copy G′ = (V ′, E ′) of G, where V ′ is disjoint from V . Finally,

we add a vertex o with an edge to all vertices in V ∪ V ′. In this way we obtain the

graph F (M).

The properties of the reduction are as follows.

Lemma 10. If there is a tour in M of length t, then F (M) can be embedded into a

line with distortion at most t.

Proof. The embedding f : F (M) → R is constructed as follows. Let v1, . . . , vn, v1 be
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the sequence of vertices visited by a tour T of length t. The embedding f is obtained

by placing the vertices V in the order induced by T , followed by the vertex o and

then the vertices V ′. Formally:

• f(v1) = 0, f(vi) = f(vi−1) + D(vi−1, vi) for i > 1

• f(o) = f(vn) + 1

• f(v′1) = f(o) + 1, f(v′i) = f(v′i−1) + D(v′i−1, v
′
i) for i > 1

It is immediate that f is non-contracting. In addition, the maximum distortion

(of at most t) is achieved by the edges {o, v1} and {o, v′n}.

Lemma 11. If there is an embedding f of F (M) into a line that has distortion c,

then there is a tour in M of length at most c + 1.

Proof. Let H = F (M). Let U = u1 . . . u2n be the sequence of the vertices of V ∪ V ′

in the order induced by f . Partition the range {1 . . . 2n} into maximal intervals

{i0 . . . i1− 1}, {i1 . . . i2− 1}, . . . , {ik−1 . . . ik− 1}, such that for each interval I, the set

{ui : i ∈ I} is either entirely contained in V , or entirely contained in V ′. Recall that

H has diameter 2. Since f has distortion c, it follows that |f(u1) − f(u2n)| ≤ 2c.

Moreover, from non-contraction of f it follows that |f(uij−1) − f(uij)| = 2 for all

j. It follows that if we swap any two subsequences of U corresponding to different

intervals I and I ′, then the resulting mapping of V ∪V ′ into R is still non-contracting

(with respect to the metric induced by H). Therefore, there exists a mapping f ′ of

V ∪ V ′ into R which is non-contracting, in which all vertices of V precede all vertices

of V ′, and such that the diameter of the set f ′(V ∪ V ′) is at most 2c. Without loss

of generality, assume that the diameter δ of f ′(V ) is not greater than the diameter of

f ′(V ′). This implies that δ ≤ (2c−2)/2 = c−1. Therefore, the ordering of the vertices

in V induced by f ′ corresponds to a tour in M of length at most δ + 2 ≤ c + 1.

By combining Lemmata 10 and 11 we obtain the following result.

Corollary 1. There exists a constant a > 1 such that a-approximating the minimum

distortion embedding of an unweighted graph is NP-hard.
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Chapter 5

Embedding Spheres Into the Plane

In this chapter we consider the following embedding problem. We are given a set of n

points X on a unit sphere in R3, and we want to embed X into the two-dimensional

Euclidean plane. There are two type of questions that we will study in the context

of this problem. First, we will show that there exists an embedding of the metric

induced by X, with distortion O(
√

n). We will also show that this bound is tight, by

giving sets X such that any embedding has distortion Ω(
√

n).

Next, we will show that using the same techniques we can obtain a O(1)-approximation

algorithm for the corresponding optimization problem.

5.1 Worst-case Upper Bound

Let M = (X, D) be a metric induced by a set X of n points on a unit sphere S2,

under the Euclidean distance in R3. Let c denote the minimum distortion of any

embedding of M into the two-dimensional Euclidean plane.

Theorem 4. If M = (X, D) is the metric induced by a set X of n points on a unit

sphere S2, under the Euclidean distance in R3, then c = O(
√

n).

Proof. Since the size of the surface of S2 is constant, it follows that there exists a

cap K in S2, of size Ω(1/n), such that X ∩K = ∅. Let p0 be the center of K on S2,

and p′0 be its antipode. By rotating S2, we may assume that p0 = (0, 0, 1), and thus
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p′0 = (0, 0,−1).

For points p, p′ ∈ S2, let ρS(p, p′) be the geodesic distance between p and p′ in

S2. Consider the mapping f : X → R2, such that for every point p ∈ X, with

p = (x, y, z), we have

f(p) =


(

ρS(p, p′0)
x√

x2+y2
ρS(p, p′0)

y√
x2+y2

)
if p 6= p′,

(0, 0) if p = p′

It is straightforward to verify that f is non-contracting.

Claim 1. The expansion of f is maximized for points p, q, on the perimeter of K,

which are antipodals with respect to K.

Proof. Let p, q ∈ S2. W.l.o.g., we assume that p = (0, sin φp, 1 + cos φp), and q =

(sin φq sin θq, sin φq cos θq, 1 + cos φq), for some 0 ≤ φp, φq ≤ φ, and 0 ≤ θq ≤ π. The

images of p and q are f(p) = (0, φp), and f(q) = (φq sin θq, φq cos θq), respectively. Let

h = ‖f(p)−f(q)‖
‖p−q‖ , be the expansion of f in the pair p, q. We obtain:

h2 =
φ2

q + φ2
p − 2φqφp cos θq

2− 2 cos φp cos φq − 2 sin φp sin φq cos θq

Observe that since sin φp ≤ φp, and sin φq ≤ φq, it follows that h2 is maximized when

cos θq is minimized. That is, the expansion is maximized for θq = π.

Thus, we can assume that the expansion of f is maximized for points p, q ∈ S2,

with p = (0, sin φp, 1 + cos φp), and q = (0,− sin φq, 1 + cos φq). For such points, the

expansion is φp+φq

2 sin
φp+φq

2

. It follows that the expansion is maximized when φp + φq is

maximized, which happens when p and q are on the perimeter of K.

We pick p and q on the perimeter of K, such that p is the antipode of q w.r.to

K. Let φK be the angle of K, and set rK = φK/2. We have rK = Ω(1/
√

n), and

‖f(p)− f(q)‖ = 2π − 2rK , while ‖p− q‖ = 2 sin rK . Thus, the expansion is at most

π−rK

sin rK
. W.l.o.g., we can assume that rK ≤ π/2, since otherwise we can simply consider

a smaller cap K. Thus, π−rK

sin rK
≤ 2π−rK

πrK
< 2

rK
= O(

√
n). Since the embedding is
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non-contracting, it follows that the expansion is O(
√

n).

5.2 Worst-Case Lower Bound

We will now show that the upper bound given above is optimal within a constant

factor.

Theorem 5. There exists a metric M = (X,D), induced by a set X of n points

on a unit sphere S2, under the Euclidean distance in R3, such that any mapping

f : X → R2 has distortion Ω(
√

n).

Proof. Let X ⊂ S2 be a set of n points, such that X is a O(1/
√

n)-net of S2, and

let f : X → R2 be a non-expanding embedding. Since S2 ⊂ R3, by Kirszbraun’s

Theorem ([14], see also [17]), we obtain that f can be extended to a non-expanding

mapping f ′ : S2 → R2. Also, by the Borsuk-Ulam Theorem, it follows that there

exist antipodals p, q ∈ S2, such that f ′(p) = f ′(q). Since X is an O(1/
√

n)-net, there

exist points p′, q′ ∈ X, such that ‖p−p′‖ = O(1/
√

n), and ‖q−q′‖ = O(1/
√

n). Since

f is non-expanding, it follows that ‖f(p′) − f(q′)‖ = O(1/
√

n). On the other hand,

we have ‖p− q‖ = 2, and thus ‖p′ − q′‖ = Ω(1). Thus, f has distortion Ω(
√

n).

5.3 A O(1)-Approximation Algorithm

We are now ready to combine the techniques of the upper and lower bounds, to obtain

an approximation algorithm for the optimization version of the problem.

Theorem 6. There exists a polynomial-time, 3.512-approximation algorithm, for the

problem of embedding a finite sub-metric of S2 into R2.

Proof. Let S2 be a unit sphere in R3. Let X ⊂ S2 be a set of n points, and let M =

(X, D) be the corresponding metric, under the Euclidean distance in R3. Initially, we

compute the largest cap K of S2, such that K ∩X = ∅. Let φK be the angle of K,

and rK = φK/2. Let also p0 be the center of K, and p′0 be its antipode, w.r.to S2. By

rotating S2, we may assume that p0 = (0, 0, 1), and thus p′0 = (0, 0,−1). Similarly to
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the proof of Theorem 4, we compute the mapping f : X → R2, such that for every

point p ∈ X, with p = (x, y, z), it is

f(p) =


(

ρS(p, p′0)
x√

x2+y2
, ρS(p, p′0)

y√
x2+y2

)
if p 6= p′

(0, 0) if p = p′

By Claim 1, we have that the expansion of f is maximized for points which are on

the perimeter of K. We pick p, p′ ∈ S2, which are on the perimeter of K, and are

antipodals w.r.to K. In this case, it is ‖f(p) − f(p′)‖ = 2π − 2rK , and ‖p − p′‖ =

2 sin rK . Since f is non-contracting, it follows that the expansion is at most π−rK

sin rK
.

It remains to show that this embedding is optimal within a constant factor. Let g

be a non-expanding embedding X → R2. Since S2 ⊂ R3, by Kirszbraun’s Theorem,

we obtain that g can be extended to a non-expanding mapping g′ : S2 → R2. Also,

by the Borsuk-Ulam Theorem, it follows that there exist antipodals p, q ∈ S2, such

that g′(p) = g′(q). Since K is the largest cap with K ∩X = ∅, it follows that there

exist points p′, q′ ∈ X, such that ρS(p, p′) ≤ rK , and ρS(q, q′) ≤ rK . Since g is

non-expanding, we have

‖g(p′)− g(q′)‖ = ‖g′(p′)− g′(q′)‖

≤ ‖g′(p′)− g′(p)‖+ ‖g′(q′)− g′(q)‖

≤ ‖p− p′‖+ ‖q − q′‖

≤ 4 sin
rK

2
.

On the other hand, it is ‖p − q‖ = 2, and thus ‖p′ − q′‖ ≥ 2 cos rK . Thus, g has

distortion at least max{ cos rK

2 sin
rK
2

, 1}. By combining the above, we obtain that the

approximation ratio of the algorithm is at most
(

π−rK

sin rK

)
/ max{ cos rK

2 sin
rK
2

, 1}. This value

is maximized for rK = 2 tan−1 (
√

3−1)33/4
√

2
6

≈ 0.749, for which we obtain that the

approximation ratio is less than 3.512.
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