On Distributing Symmetric Streaming Computations

Anastasios Sidiropoulos (MIT)

Joint work with:
Jon Feldman (Google Inc)
Muthu Muthukrishnan (Google Inc)
Cliff Stein (Columbia University)
Zoya Svitkina (Dartmouth College)

Large Data Sets

- How do we deal with large data sets?
- Too much space:
 - Input does not fit into memory
 - Streaming, external memory algorithms, sampling
- Too much time:
 - Single machine cannot handle all the data
 - Parallelization

Streaming

Input: n records, log(n) bits each

- Simple model
- Easy to program
- Typically approximate
- Efficient computation of (simple) statistics [AMS99], [GGIKMS02], [Muthu03]

Parallel Computation

Typical Model: PRAM [Fortune, Wyllie 78]

Prohibitively large communication overhead

 Also true for other models: LogP [CKPS+93], [PaYa 88], etc

Modern Distributed Computation for Large Data Sets

- Data spread arbitrarily in 1000's of chunks.
- Many loosely coordinated machines work independently on the chunks.
- Process can iterate.
- Example: MapReduce (Google), Hadoop (Apache, Yahoo!)

MUD (Massive Unordered Distributed)

How powerful is MUD?

- Streaming can simulate MUD
- Can MUD simulate Streaming?
 - YES if we make the comparison fair

What is not fair?

- if we want to solve a problem that depends critically on the ordering of the input.
- E.g. "How many times does the first odd number appear in the input?"

- What about symmetric problems?
- NO in general. E.g.: Symmetric-Index

```
Input: (j,x_1),(j,x_2),\ldots,(j,x_n),(i,y_1),(i,y_2),\ldots,(i,y_n) i,j\in[n],x_k,y_l\in\{0,1\} s.t.: x_j=y_i=\alpha Output: \alpha
```

- Streaming easy: Read first record (j,x), wait until you read y_j
- MUD hard: Bad instance:

- What about symmetric total single-value problems?
- YES! In this case, MUD = Streaming

Streaming algorithm S

Run S with memory S(x), on input y'

Non-deterministically: Guess y' bit-by-bit, simulate S starting with memory S(x), and S with empty memory.

If S with empty memory does not yield memory S(y), then reject. By Savitch's theorem, there exists polylog-space algorithm.

Correctness:

$$S^{S(x)}(y') = S(x, y') = S(y', x) = S^{S(y')}(x) = S^{S(y)}(x) = S(y, x) = S(x, y)$$

Summary

- MUD = Streaming on symmetric total functions (deterministic case)
- Also true for randomized algorithms that compute symmetric functions for any fixed randomness
- Not true for randomized algorithms, if MUD has private randomness
- Not true for partial functions
- Not true for indeterminate functions

Conclusions and Open Problems

- Can we capture more realistic scenarios?
 - E.g. different communication patterns
 - Multiple parallel instantiations / multiple labels of output
- k-round MUD vs k-pass Streaming?
- Time bounds?
- Approximation algorithms?