
On Distributing

Symmetric Streaming

Computations

Anastasios Sidiropoulos (MIT)

Joint work with:

Jon Feldman (Google Inc)

Muthu Muthukrishnan (Google Inc)

Cliff Stein (Columbia University)

Zoya Svitkina (Dartmouth College)

• How do we deal with large data sets?

• Too much space:

• Input does not fit into memory

• Streaming, external memory algorithms, sampling

• Too much time:

• Single machine cannot handle all the data

• Parallelization

Large Data Sets

Streaming

Input: n records, log(n) bits each

polylog(n)-space

machine

• Simple model

• Easy to program

• Typically approximate

• Efficient computation of (simple) statistics
[AMS99], [GGIKMS02], [Muthu03]

Parallel Computation

• Typical Model: PRAM [Fortune,Wyllie 78]

Prohibitively large communication overhead

• Also true for other models: LogP [CKPS+93],
[PaYa 88], etc

• Data spread arbitrarily in 1000’s of

chunks.

• Many loosely coordinated machines work

independently on the chunks.

• Process can iterate.

• Example: MapReduce (Google), Hadoop

(Apache, Yahoo!)

Modern Distributed Computation for

Large Data Sets

MUD (Massive Unordered Distributed)

M machines

n/M records n/M records n/M records

M records

n records

polylog(n) bitspolylog(n) bits

unordered

MUD vs. Streaming

How powerful is MUD?

• Streaming can simulate MUD

• Can MUD simulate Streaming?

• YES if we make the comparison fair

MUD vs. Streaming

What is not fair?

• if we want to solve a problem that

depends critically on the ordering of the

input.

• E.g. “How many times does the first

odd number appear in the input?”

Input:

s.t.:

Output:

MUD vs. Streaming

• What about symmetric problems?

• NO in general. E.g.: Symmetric-Index

MUD vs. Streaming

• Streaming easy: Read first record (j,x), wait

until you read yj

• MUD hard: Bad instance:

Alice Bob

Carol

polylog(n) bits polylog(n) bits

?

MUD vs. Streaming

• What about symmetric total single-value

problems?

• YES! In this case, MUD = Streaming

MUD vs. Streaming

Streaming algorithm S

x y

Alice Bob

S(x) S(y)

Carol

Guess y’, s.t. S(y’)=S(y)

Run S with memory S(x), on input y’

Non-deterministically: Guess y’ bit-by-bit, simulate S starting

with memory S(x), and S with empty memory.

If S with empty memory does not yield memory S(y), then reject.

By Savitch’s theorem, there exists polylog-space algorithm.

Correctness:

Summary

• MUD = Streaming on symmetric total

functions (deterministic case)

• Also true for randomized algorithms that

compute symmetric functions for any fixed

randomness

• Not true for randomized algorithms, if MUD

has private randomness

• Not true for partial functions

• Not true for indeterminate functions

Conclusions and Open Problems

• Can we capture more realistic scenarios?

• E.g. different communication patterns

• Multiple parallel instantiations / multiple labels of

output

• k-round MUD vs k-pass Streaming?

• Time bounds?

• Approximation algorithms?

