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Abstract
We introduce a new notion of embedding, calledminimum-
relaxation ordinal embedding, parallel to the standard notion
of minimum-distortion (metric) embedding. In an ordinal
embedding, it is the relative order between pairs of distances,
and not the distances themselves, that must be preserved
as much as possible. The (multiplicative) relaxation of
an ordinal embedding is the maximum ratio between two
distances whose relative order is inverted by the embedding.
We develop several worst-case bounds and approximation
algorithms on ordinal embedding. In particular, we establish
that ordinal embedding has many qualitative differences
from metric embedding, and capture the ordinal behavior of
ultrametrics and shortest-path metrics of unweighted trees.

1 Introduction
The classical field ofmultidimensional scaling (MDS)has
witnessed a surge of interest in recent years with a slew of
papers onmetric embeddings; see e.g. [21]. The problem
of multidimensional scaling is that of mapping points with
some measured pairwise distances into some target metric
space. Originally, the MDS community considered embed-
dings into aǹ p space, with the goal of aiding in visualiza-
tion, compression, clustering, or nearest-neighbor searching;
thus, low-dimensional embeddings were sought. Anisomet-
ric embeddingpreserves all distances, while more generally,
metric embeddingstradeoff the dimension with the fidelity
of the embeddings.

Note, however, that the distances themselves are not
essential in nearest-neighbor searching and many contexts of
visualization, compression, and clustering. Rather, the order
of the distances captures sufficient information, that is, we
might only need an embedding into a metric space with any
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monotone mapping of the distances. Such embeddings were
heavily studied in the early MDS literature [13,24,25,31,32]
and have been referred to asordinal embeddings, nonmetric
MDS, or monotone maps. Here, we use the first term.

While the early work on ordinal embeddings was largely
heuristic, there has been some work with mathematical
guarantees since then. Define adistance matrixto be any
matrix of pairwise distance, not necessarily describing a
metric. In [30], it was shown that it is NP-hard to decide
whether a distance matrix can be ordinally embedded into an
additive metric, i.e., the shortest-path metric in a tree. Define
theordinal dimensionof a distance matrix to be the smallest
dimension of a Euclidean space into which the matrix can
be ordinally embedded. Bilu and Linial [7] have shown that
every matrix has ordinal dimension at mostn− 1. They also
applied the methods of [3] to show that (in a certain well-
defined sense) almost everyn-point metric space has ordinal
dimensionΩ(n). Because ultrametrics can be characterized
by the order of distances on all triangles, they are closed
under monotone mappings. Holman [20] showed thatn-
point ultrametrics can be isometrically embedded into(n −
1)-dimensional Euclidean space and thatn − 1 dimensions
are necessary. Combined with the closure property just
noted, this shows that the ordinal dimension of ultrametrics
is exactly the maximaln− 1.

Relaxations of ordinal embeddings have involved prob-
lems of deciding the realization of partial orders. For exam-
ple, Opatrny [29] showed that it is NP-hard to decide whether
there is an embedding into one dimension satisfying a partial
order that specifies the maximum edge for some triangles.
Such partial orders on triangles are calledbetweenness con-
straints. Chor and Sudan [12] gave a1/2-approximation for
maximizing the number of satisfied constraints. It is also
NP-hard to decide whether there is an embedding into an ad-
ditive metric that satisfies a partial order defined by the total
order of each triangle [30].

1.1 Our Results. We take a different approach. We define
a metric M ′ to be anordinal embedding with relaxation
α ≥ 1 of a distance matrixM if αM [i, j] < M [k, l] implies
M ′[i, j] < M ′[k, l]. In other words, significantly different
distances have their relative order preserved. Note that in
an ordinary ordinal embedding, we must respect distance
equality, while in an ordinal embedding with relaxation1, we
may break ties. It is now natural to minimize the relaxation
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needed to embed a distance matrixM into a target family
of metric spaces. Here we optimize the confidence with
which we make an ordinal assertion, rather than the number
of ordinal constraints satisfied.

In this paper, we prove a variety of results about theOr-
dinal Relaxation Problem. We show that the best relaxation
achievable is always at most the bestdistortion of a met-
ric embedding. Furthermore, while the optimal relaxation is
bounded by the ratio between the largest and smallest dis-
tances inM , the optimal distortion can grow arbitrarily. In-
deed, the ratio between the optimal relaxation and distortion
can be arbitrarily large even when embedding into the line,
and can be infinite when embedding into cut metrics. (We
also give a polynomial-time algorithm to compute the best
ordinal embedding into a cut metric.) We show that, if the
target class of the embedding is ultrametrics, the relaxation
and distortion are equal, and the optimal embedding can be
computed in polynomial time. More surprisingly, we show
that ultrametrics are the only target metrics for which all dis-
tance matrices have a bounded ratio between the best distor-
tion and the best relaxation.

We demonstrate many more differences between ordinal
and metric embeddings. While any metric can be isomet-
rically embedded intò∞, there are four-point metrics that
cannot be so embedded into any`p, p < ∞. In contrast,
we show that it is possible to ordinally embed any distance
matrix into `p for any fixed1 ≤ p ≤ ∞. We show that the
shortest-path metric of an unweighted tree can be ordinally
embedded intod-dimensional Euclidean space with relax-
ation Õ(n1/d). We also show that relaxationΩ(n1/(d+1))
is sometimes necessary. In contrast, the best bounds on the
worst-case distortion required areO(n1/(d−1)) andΩ(n1/d)
[17]. The proof techniques required for the ordinal case are
also substantially different (in particular because the usual
“packing” arguments fail) and lead to approximation algo-
rithms described below. We show that ultrametrics can be
ordinally embedded intoO(lg n)-dimensional̀ p space with
relaxation1. In contrast, the best known metric embedding
of ultrametrics intoc lg n-dimensional space has distortion
1 + Ω(1/

√
c) [6], and ordinary (no-relaxation) ordinal em-

beddings requiren− 1 dimensions. For general metrics, we
show a lower bound ofΩ(lg n/(lg d + lg lg n)) on the relax-
ation of any ordinal embedding intod-dimensional̀ p space
for fixed integersp or p = ∞. In particular, ford = Θ(lg n),
this lower bound isΩ(lg n/ lg lg n), leaving a gap between
the upper bound ofO(lg n) which follows from Bourgain
embedding. In contrast, for metric embeddings, there is an
Ω(lg n) lower bound on distortion ford = Θ(lg n) [27,28].

We also develop approximation algorithms for find-
ing the minimum possible relaxation for an ordinal em-
bedding of a specified metric. Specifically, we give a3-
approximation for ordinal embedding of the shortest-path
metric of a specified unweighted tree into the line. In con-
trast, onlyO(n1/3)-approximation algorithms are known for
the same problem with distortion [5]. In general, approxima-
tion algorithms for embedding are a central challenge in the
field, and few are known [19, 22, 10, 1, 15, 11]. We also ex-

pect that our techniques will extend to obtain approximation
algorithms for more general ordinal embedding problems.

2 Definitions
In this section, we define ordinal embeddings and relaxation,
as well as the standard notions of metric embeddings and
distortion.

Consider a finite metricD : P × P → [0,∞) on a
finite point setP—thesource metric—and a classT of met-
ric spaces(T, d) ∈ T whered is the distance function for
spaceT—the target metrics. An ordinal embedding (with
no relaxation)of D into T is a choice(T, d) ∈ T of a
target metric and a mappingφ : P → T of the points
into the target metric such that every comparison between
pairs of distances has the same outcome: for allp, q, r, s ∈
P , D(p, q) ≤ D(r, s) if and only if d(φ(p), φ(q)) ≤
d(φ(r), φ(s)). Equivalently,φ induces a monotone function
D(p, q) 7→ d(φ(p), φ(q)), and for this reason ordinal embed-
dings are also calledmonotone embeddings. An ordinal em-
bedding with relaxationα of D intoT is a choice(T, d) ∈ T
and a mappingφ : P → T such that every comparison be-
tween pairs of distances not within a factor ofα has the same
outcome: for allp, q, r, s ∈ P with D(p, q)/D(r, s) > α,
d(φ(p), φ(q)) > d(φ(r), φ(s)). Equivalently, we can view a
relaxationα as defining a partial order on distancesD(p, q),
where two distancesD(p, q) andD(r, s) are comparable if
and only if they are not within a factor ofα of each other,
and the ordinal embedding must preserve this partial order
on distances.

An ordinal embedding with relaxation1 is a different
notion from ordinal embedding with no relaxation, because
the former allows violation of equalities between pairs of
distances. Indeed, we will show in Section 6.1 that the two
notions have major qualitative differences. We define ordinal
embedding with relaxation in this way, instead of making the
> α inequality non-strict, because otherwise our notion of
relaxation1 would have to be phrased as “relaxation1 + ε
for anyε > 0”. Another consequence is that we can define
the minimum possible relaxationα∗ = α∗(D, T ) of an
ordinal embedding ofD into T , instead of having to take an
infimum. (The infimum will be realized provided the space
T is closed.)

We pay particular attention to contrasts between ordinal
embedding and “standard” embedding, which we call “met-
ric embedding” for distinction. Acontractive metric em-
bedding with distortionc of a source metricD into a class
T of target metrics is a choice(T, d) ∈ T and a mapping
φ : P → T such that no distance increases and every dis-
tance is preserved up to a factor ofc: for all p, q ∈ P ,
1 ≤ D(p, q)/d(φ(p), φ(q)) ≤ c. Similarly, we can define
anexpansive metric embedding with distortionc with the in-
equality 1 ≤ d(φ(p), φ(q))/D(p, q) ≤ c. When c = 1,
these two notions coincide to require exact preservation of all
distances; such an embedding is called ametric embedding
with no distortionor an isometric embedding. In general,
c∗ = c∗(D, T ) denotes the minimum possible distortion of
a metric embedding ofD into T . (This definition is equiv-



alent for both contractive and expansive metric embeddings,
by scaling.)

3 Comparison between Distortion and Relaxation
The following propositions relateα∗ andc∗.

PROPOSITION3.1. For any source & target metrics,α∗≤c∗.

Proof sketch.Follows from the definitions. 2

Next we show thatc∗ and α∗ can have an arbitrarily
large ratio, even when the target metric is the real line.

PROPOSITION3.2. Embedding a uniform metric (where
D(p, q) = 1 for all p 6= q) into the real line hasc∗ = n− 1
andα∗ = 1.

Proof. The mappingφ(p) = 0, for all p ∈ P , is an ordi-
nal embedding with no relaxation, because every distance re-
mains equal (albeit0). Any expansive metric embedding into
the real line must have distance at least1 between consecu-
tively embedded points, so the entire embedding must oc-
cupy an interval of length at leastn− 1. The two points em-
bedded the farthest away from each other therefore have dis-
tance at leastn−1, for a distortion of at leastn−1. Also, any
embedding in which consecutively embedded points have
distance exactly1 has distortionn− 1. 2

Next we give a general bound onα∗ that is essentially
always finite. Define thediameterdiam(D) of a metricD
to be the ratio of the maximum distance to the minimum
distance. (If the minimum distance is zero and the maximum
distance is positive, thendiam(D) = ∞; if both are zero,
thendiam(D) = 1.)

PROPOSITION3.3. For any source metricD and any target
metrics,α∗ ≤ diam(D).

Proof. The mappingφ(p) = 0, for all p ∈ P , has ordinal
relaxationdiam(G), because all non-equal comparisons be-
tween distances are violated, and the largest ratio between
any two distances is preciselydiam(D). 2

No such general finite upper bound exists forc∗, as
evidenced by “cut metrics”. Acut metric is defined by a
partitionP = A∪B of the point setP into two disjoint sets
A andB. The metric assigns a distance of0 between pairs of
points inA and pairs of points inB, and assigns a distance
of 1 between other pairs of points. If the source metricD has
no zero distances and the target metrics are the cut metrics,
thenc∗ = ∞, because some distance must become0 which
requires infinite distortion.

In contrast,α∗ remains at mostdiam(D), and in some
sense measures the quality of a clustering of the points into
two clusters. Furthermore, the optimalα∗ and clustering can
be computed efficiently:

PROPOSITION3.4. The minimum-relaxation ordinal em-
bedding of a specified metric into a cut metric can be com-
puted in polynomial time.

Proof sketch.It is possible to test in polynomial time, by
reduction to 2-SAT, whether a relaxation ofα∗ is feasible.
There areO(n4) possible choices for the optimal relationα∗,
because the optimal relaxation must be the ratio of two of the(
n
2

)
distances. Thus we have a polynomial-time algorithm.2

Next we consider the related problem of ordinal embed-
ding into the real line, which is a generalization of cut met-
rics. First we show that we can decide whetherα∗ = 1 in this
case. The algorithm requires more sophistication (namely,
guessing) than the trivial algorithm for metric embedding
with distortion1, where one can incrementally build an em-
bedding in any Euclidean space in linear time.

PROPOSITION3.5. In polynomial time, we can decide
whether a given metric can be ordinally embedded into the
line with relaxation1.

Proof. The algorithm guesses the leftmost pointp and greed-
ily places every pointq at positionD(p, q) on the line. (In
particular, the algorithm placesp at position0.) It is easy to
show that this embedding has ordinal relaxation1 whenever
such an embedding exists. 2

Next we consider the worst case for ordinal embedding
into the line. We show in particular that the cycle requires
large relaxation. The cycle also requires large distortion into
the line, but the proof technique for ordinal relaxation is very
different from the usual “packing argument” that suffices for
metric distortion.

PROPOSITION3.6. Ordinal embedding of the shortest-path
metric of an unweighted cycle of even lengthn into the line
requires relaxation at leastn/2.

Proof. Suppose to the contrary that there is an ordinal em-
beddingφ of the cycle into the line with relaxation less
than n/2. Label the vertices of the cycle1 throughn in
cyclic order. Assume without loss of generality thatφ(1) <
φ(n/2+1). We must also haveφ(2) < φ(n/2+1), because
otherwise|φ(2)−φ(1)| ≥ |φ(n/2+1)−φ(1)|, contradicting
thatα < n/2. Similarly,φ(2) < φ(n/2 + 2), because other-
wise |φ(n/2 + 2) − φ(n/2 + 1)| ≥ |φ(n/2 + 2) − φ(2)|,
again contradicting thatα < n/2. Repeating this argu-
ment shows thatφ(3) < φ(n/2 + 3), etc., and finally that
φ(n/2 + 1) < φ(1), a contradiction. 2

Section 5 shows that some trees also requireΩ(n)
ordinal relaxation into the line.

4 `p Metrics are Universal
In this section we show that every distance matrix can
be ordinally embedded without relaxation into`p space of
a polynomial number of dimensions, for any fixed1 ≤
p ≤ ∞. This result is surprising in comparison to metric
embeddings. Every metric can be embedded into`p using
O(lg n) distortion [8, 27], and in the worst caseΩ(lg n)
distortion is necessary for anyp < ∞, as proved in [27]



for p = 2 and in [28] for all other values ofp. In particular,
the shortest-path metric of a constant-degree expander graph
requiresΩ(lg n) distortion.

THEOREM 4.1. Every distance matrix can be ordinally em-
bedded without relaxation intoO(n5)-dimensional̀ p space,
for any fixed1 ≤ p ≤ ∞.

The same result was established independently in [7]
using an algebraic proof. Specifically, they show that every
distance matrix can be ordinally embedded into(n − 1)-
dimensional Euclidean space, and then use the property that
any Euclidean metric can be isometrically embedded into
any`p space with at most

(
n
2

)
dimensions. In constrast, our

proof is purely combinatorial.
We can also reduce the number of dimensions for some

values ofp. For example, forp = 2, a simple rotation
reduces the number of dimensions ton− 1.

Our proof proceeds in two steps. First we show that 0/1
Hamming metrics are universal in the same sense as Theo-
rem 4.1. We omit the argument from this extended abstract.
To conclude the proof, we note that there is an ordinal em-
bedding without relaxation from 0/1 Hamming metrics into
any `p metric. In fact, thepth root of the distances in a 0/1
Hamming metric can be metrically embedded without dis-
tortion into`p with the same number of dimensions.

5 Approximation Algorithms for Unweighted Trees
into the Line

In this section, we give a3-approximation algorithm for
ordinally embedding the shortest-path metric induced by an
unweighted tree into the line with approximately minimum
relaxation. In contrast, the best approximation algorithm
known for metrically embedding trees into the line with
approximately minimum distortion is a recently discovered
O(n1/3)-approximation [5].

First we find a structure for proving lower bounds on the
optimal relaxation:

LEMMA 5.1. Given n such that3 dividesn − 1, ordinal
embedding of the shortest-path metric of an unweighted3-
spider with(n− 1)/3 vertices on each leg of the spider (i.e.,
a 3-star with each edge subdivided into a path of(n − 1)/3
edges) requires relaxation at least(n− 1)/3.

Proof. Suppose to the contrary that there is an ordinal em-
bedding φ of the 3-spider into the line with relaxation
α < (n − 1)/3. Label the vertices as follows:0 de-
notes the root, anda1, . . . , a(n−1)/3, b1, . . . , b(n−1)/3, and
c1, . . . , c(n−1)/3 denote the nodes on the legs of the spi-
der in order of their distance from the root0. Because
α < (n − 1)/3, |φ(a(n−1)/3) − φ(0)| > 0, and the same
holds for b(n−1)/3 and c(n−1)/3. Because the spider has
three legs, two ofa(n−1)/3, b(n−1)/3, c(n−1)/3 are on the
same side of the root0 on the line. Without loss of gen-
erality, assume that thea and b legs are both to the right
of 0, and thatφ(a(n−1)/3) ≥ φ(b(n−1)/3) > φ(0). Let
k be such thatφ(ak) < φ(b(n−1)/3) < φ(ak+1) (where

the labela0 refers to the root0). Such ak exists because
α < (n − 1)/3, soφ(ak) 6= φ(b(n−1)/3) for all k, and be-
causeφ(0) < φ(b(n−1)/3) < φ(a(n−1)/3). It follows that
|φ(b(n−1)/3)− φ(ak+1)| < |φ(ak+1)− φ(ak)|. In contrast,
in the 3-spider graph,b(n−1)/3 and ak+1 have distance at
least(n− 1)/3, andak+1 andak have distance1. Therefore
α > (n− 1)/3. 2

DEFINITION 5.1. Given a treeT , a tripod (a, b, c) is the
union of shortest paths inT connecting every pair of vertices
among{a, b, c}. The root r of the tripod is the common
vertex among all three shortest paths. Thelength of the
tripod isk = min{D(r, a), D(r, b), D(r, c)}.

Any tripod of lengthk induces a 3-spider withk vertices
on each leg, by truncating all longer arms of the tripod to
length k. Thus by Lemma 5.1, any tree with a tripod of
length k must have ordinal relaxation at leastk. Using
this lower bound, we obtain a constant-factor approximation
algorithm.

THEOREM 5.1. Given a treeT , there is an ordinal embed-
ding φ : T → R of T into the line with relaxation2k + 1,
wherek is the length of the largest tripod ofT . The embed-
ding can be computed in polynomial time.

Proof. If there are at most two leaves in the treeT , thenT
can be trivially embedded into the line without distortion or
relaxation. Otherwise,T has a tripod. Let(A,B,C) be a
longest tripod, letr be its root, and letk be its length. We
view T as rooted atr. Let (a, b, c) be a tripod rooted atr
that maximizesD(r, a) + D(r, b) + D(r, c). This tripod
corresponds to taking the longest three paths starting from
different neighbors ofr. In particular all three paths have
length at leastk, so the tripod(a, b, c) has lengthk. Relabel
{a, b, c} so thatD(r, a) = k.

CLAIM 5.1. For any d ∈ {a, b, c}, for anyd′ 6= r on the
path fromr to d, and for any descendantx of d′, D(d′, x) ≤
D(d′, d).

Proof. Assume, to the contrary, thatD(d′, x) > D(d′, d).
If d = a, then there would be a larger tripod(x, b, c)
rooted atr. Otherwise, assume without loss of generality
that d = b. Then there would be a tripod(a, x, c), of the
same length, and such thatD(r, a) + D(r, x) + D(r, c) >
D(r, a) + D(r, b) + D(r, c), a contradiction. 2

CLAIM 5.2. For anyd ∈ {b, c}, for anyd′ 6= r on the path
fromr tod, and for any descendantx ofd′, such that the path
fromx to d′ intersects the path fromr to d only at vertexd′,
D(d′, x) ≤ k.

Proof. Suppose to the contrary thatD(d′, x) > k. By the
definition of d′, D(d′, a) > D(r, a) = k. By Claim 5.1,
D(d′, d) ≥ D(d′, x). If D(d′, d) ≤ k, thenD(d′, x) ≤
D(d′, d) ≤ k, a contradiction. IfD(d′, d) > k, then the
tripod (x, d, a) (rooted atd′) has length at leastk + 1, which
is again a contradiction. 2



Now we construct the embeddingφ as follows. For
every vertexx on the shortest path betweenb and c, we
contract every subtree that intersects the path only atx into
the single vertexx. The resulting graph is the same path from
b to c, but where each vertex represents several vertices of the
original graph. We embed this path into the line, placing the
ith vertex along the path at coordinatei. This embedding
places several vertices of the original graph at the same point
in the line.

We claim that the depth of each contracted tree is
at most k. For each subtree rooted atr (e.g., the one
containinga), no vertexx in the subtree can haveD(r, x) >
k because then we could have chosen that vertex asa and
increase the objective functionD(r, a)+D(r, b)+D(r, c), a
contradiction. For each subtree rooted at another nodeb′ 6= r
on the path fromb to c, we can apply Claim 5.2 and obtain
thatD(b′, x) ≤ k for any vertexx in the subtree rooted atb′.
Therefore the depth of each contracted tree is at mostk.

Finally we claim that the ordinal relaxation of this
mapping is at most2k + 1. Consider two verticesx
and y belonging to contracted subtrees rooted ats and t,
respectively. Their original distance is at most2k + D(s, t),
and their new distance isD(s, t). Therefore the distance
changes order with respect to distances at leastD(s, t), for
a worst-case ratio of(2k + D(s, t))/D(s, t). This ratio is
maximized whenD(s, t) = 1 in which case it is2k + 1. 2

COROLLARY 5.1. There is an algorithm to findφ of Theo-
rem 5.1. The algorithm is a3-approximation algorithm for
ordinally embedding trees into a line.

Proof. The proof of Theorem 5.1 is constructive, thus it
gives an algorithm. Since the length of the largest tripod is
a lower bound of embedding ordinally the tripod into a line,
we obtain that the algorithm is a(2 + 1/k)-approximation
algorithm. 2

6 Ultrametrics
In this section we establish several results about ordinal
embedding when the source metric or the target metrics are
ultrametrics.

6.1 [. Ultrametrics intò p with Logarithmic Dimensions]
Ultrametrics intò p with Logarithmic Dimensions

First we demonstrate that ultrametrics can be ordinally
embedded intoO(lg n)-dimensional̀ p space, for any fixed
1 ≤ p ≤ ∞, with relaxation1. Here we exploit the minor
difference between “relaxation1” and “no relaxation”—that
equality constraints can be violated—because, as described
in the introduction, any ordinal embedding without relax-
ation of any ultrametric into Euclidean space requiresn− 1
dimensions. Thus the ordinal dimension of an ultrametric
is “just barely” n − 1; the slightest relaxation allows us to
obtain a much better embedding. Our result also contrasts
metric embeddings where ultrametrics can be embedded into
Euclidean space with1+ε distortion, but such an embedding
requiresε−2 lg n dimensions [6]. The number of dimensions
in our ordinal embeddings is independent of any suchε.

Our construction is based on monotone stretching of the
discrepancy between different distances:

LEMMA 6.1. For any k > 1, and for any ultrametric
M = (P,D), there is an ultrametricM ′ = (P,D′)
such that, for anyp, q, r, s ∈ P , if D(p, q) = D(r, s),
thenD′(p, q) = D′(r, s), and if D(p, q) > D(r, s), then
D′(p, q) ≥ kD′(r, s).

Proof. BecauseM is an ultrametric, we can construct a
weighted treeT , with P forming the set of leaves, such that
the weights are nondecreasing along any path ofT starting
from the root. Moreover, for anyu, v ∈ P , the ultrametric
distanceD(u, v) is equal to the maximum weight of an edge
along the path fromu to v in T .

For u, v ∈ P , definer(D(u, v)) = i whereD(u, v) is
equal to theith smallest distance inM . Consider now the
weighted treeT ′ obtained fromT by replacing an edge of
weightw by an edge of weightkr(w). LetM ′ be the resulting
ultrametric induced byT ′. If D(p, q) = D(r, s), then
r(D(p, q)) = r(D(r, s)), soD′(p, q) = D′(r, s). Finally,
if D(p, q) > D(r, s), thenr(D(p, q)) ≥ r(D(r, s)) + 1, so
D′(p, q) ≥ kD′(r, s). 2

We combine this lemma with a result for the metric case:

LEMMA 6.2. (BARTAL AND MENDEL [6]) For any 1 ≤
p ≤ ∞, anyn-point ultrametric can be metrically embed-
ded intoO(ε−2 lg n)-dimensional̀ p space with distortion
at most1 + ε.

Now we are ready to prove the main result of this
subsection:

THEOREM 6.1. For any1 ≤ p ≤ ∞, anyn-point ultramet-
ric can be ordinally embedded intoO(lg n)-dimensional̀ p

space with relaxation1.

Proof. Given an ultrametricM = (P,D), by Lemma 6.1,
we can obtain an ultrametricM ′ = (P,D′) such that, for
any p, q, r, s ∈ P , if D(p, q) = D(r, s), thenD′(p, q) =
D′(r, s), and if D(p, q) > D(r, s), then D′(p, q) ≥
2D′(r, s). Applying Lemma 6.2 withε = 1/2, we ob-
tain a contractive metric embeddingφ of P into O(lg n)-
dimensional̀ p space such that, for anyp, q, r, s ∈ P , if
D(p, q) > D(r, s), then‖φ(p) − φ(q)‖ ≥ 2

3D′(p, q) ≥
4
3D′(r, s) ≥ 4

3‖φ(r)− φ(s)‖. Thereforeφ is an ordinal em-
bedding with relaxation1. 2

6.2 Arbitrary Distance Matrices into Ultrametrics. In
this subsection, we give a polynomial-time algorithm for
computing an ordinal embedding of an arbitrary metric into
an ultrametric with minimum possible relaxation.

We will show that the optimal ordinal embedding of a
distance matrixM into an ultrametric is thesubdominant
of M [16]. One recursive construction of the subdominant
is as follows. First, we compute a partitionP = P1 ∪ P2 ∪
· · · ∪ Pk, for somek ≥ 2, such that the minimum distance



between anyPi andPj is maximized. Such a partition can
be found by computing a minimum spanning treeT of M ,
and partitioning the points by removing all the edges of
T of maximum length. Let∆ be the maximum distance
between any two points inP . We create a hierarchical
tree representation for an ultrametric by starting with a
root vP and k children vP1 , . . . , vPk

. The length of the
edge{vP , vPi} is equal to∆ for eachi ∈ {1, 2, . . . , k}.
We recursively compute hierarchical tree representations for
the metrics induced by the point setsP1, P2, . . . , Pk, and
then we merge these trees by identifying, for eachi ∈
{1, 2, . . . , k}, the root of the tree forPi with the nodevPi

. In
fact this entire construction can be carried out with a single
computation of the minimum spanning tree, and thus takes
linear time.

LEMMA 6.3. Let ∆ = maxp,q∈P D(p, q) and letδ be the
minimum distance between two points in different setsPi and
Pj . Then any ordinal embedding has relaxation at least∆/δ.

Proof. Suppose that the maximum distance∆ is attained by
pointsu, v with u ∈ Pi andv ∈ Pj , wherei 6= j. Consider
an optimal ordinal embeddingφ of M into a hierarchical
tree representationT of an ultrametric. Thus the distance
between two leavesp andq is equal to the maximum length
of an edge along the unique path betweenp andq. No matter
how φ splits P into subsets at the root ofT , there exist
r, s ∈ P such thatD(r, s) = δ and the path fromr to s
in T visits the root ofT . Thus the path fromr to s passes
through the maximum edge inT . Hence, the maximum
distance along the path betweenu and v in T cannot be
larger than the maximum distance along the path between
r and s in T . Therefored(φ(u), φ(v)) ≤ d(φ(r), φ(s)),
while D(u, v) = ∆ > δ = D(r, s), so the relaxation is
at least∆/δ. 2

THEOREM 6.2. Given any distance matrixM , we can com-
pute in polynomial time an optimal ordinal embedding ofM
into an ultrametric.

Proof. Let φ be the ordinal embedding ofM = (P,D)
computed by the algorithm, with a hierarchical tree repre-
sentationT . The maximum relaxationα of φ is attained
for somep, q, r, s ∈ P such thatD(p, q) ≥ αD(r, s) and
d(φ(p), φ(q)) < d(φ(r), φ(s)). It follows that there exists
an internal nodev of T , with childrenv1 andv2, such that
leavesp andq are descendants ofv1, while only one of the
leavesr or s is a descendant ofv1. Assume without loss of
generality thatr is a descendant ofv1 ands is a descendant
of v2.

Consider the recursive call of the algorithm on a subset
of points P ′ ⊆ P in which the nodev was created.
Becauser and s are in different subtrees ofv, it follows
that, in the partition of the setP ′ of points computed by
the algorithm, the minimum distance between distinct sets
is at mostD(r, s). On the other hand, the maximum distance
between pairs of points inP ′ is at leastD(p, q). Thus, by
Lemma 6.3, the optimal relaxation for ordinal embedding of
M into an ultrametric is at leastD(p, q)/D(r, s) ≥ α. 2

By a similar argument it can be shown that the same
algorithm also computes a metric embedding ofM into an
ultrametric with minimum possible distortion. Furthermore,
the distortion is equal to the relaxation in this embedding. In
the next section we show that ultrametrics are essentially the
only case where this can happen universally.

6.3 When Distortion Equals Relaxation. Finally we
show that, in a certain sense, ultrametrics are the only tar-
get metrics that have equal values ofα∗ andc∗, or even a
universally bounded ratio betweenα∗ andc∗.

THEOREM 6.3. If a setT of target metrics is closed under
inclusion (i.e., closed under taking the submetric induced
on a subset of points), and there is a constantC such that
every distance matrixD hasc∗/α∗ ≤ C (when embedding
D into T ), then every metric inT is an ultrametric.

Proof. Consider any metricM in T . We claim thatM has
more than one diameter pair. Suppose to the contrary that
only p andq attain the maximum distance inM . LetM+d be
the distance matrix identical toM except forM+d(p, q) =
M(p, q) + d. Let d be any positive real greater than the
sum of the second- and third-largest distances. ThenM+d

is not in T because it violates the triangle inequality and
T is a family of metrics. Because no other distance inM
is equal toM(p, q), M+d can be ordinally embedded with
no relaxation intoT simply by takingM . However,M+d

cannot be metrically embedded intoT without distortion,
becauseM+d is not in T . FurthermoreM+cd cannot be
metrically embedded intoT with distortion less thanc,
because any contractive metric embedding must reduce the
distance betweenp andq by a factor ofc. Therefore the ratio
between the minimum metric distortionc∗ and the minimum
ordinal relaxationα∗ cannot be bounded.

Now by inclusion, any submetric ofM induced by three
points is also inT , and therefore has a non-unique maximum
edge. Thus all triangles inM are tall isosceles, which is one
characterization ofM being an ultrametric. 2

In fact, this theorem needs only that the setT of target
metrics is closed under taking the induced metric on any
triple of points.

7 Worst Case of Unweighted Trees into Euclidean
Space

In this section, we consider the worst-case relaxation re-
quired for ordinal embedding of the shortest-path metric of
an unweighted treeT into d-dimensional̀ 2 space. Our work
is motivated by that of Gupta [17] and Babilon, Matoušek,
Maxová, and Valtr [4]. We show that, for anyd ≥ 2, and
for any unweighted treeT on n nodes,α∗ = Õ(n1/d).
We complement this result by exhibiting a family of trees
with optimal ordinal relaxationΩ(n1/(d+1)). In contrast,
the best bounds on the worst-case distortion required are
Õ(n1/(d−1)) andΩ(n1/d) [17]. These ranges overlap at the
endpoint ofΘ̃(n1/d), but it seems that ordinal embedding



and metric embedding behave fundamentally differently, in
particular because different proof techniques are required for
both the upper and lower bounds.

First we prove the upper bound. At a high level, the
algorithm finds nodes that can be contracted to a single point,
which can be an effective ordinal embedding, unlike metric
embedding where it causes infinite distortion.

THEOREM 7.1. Any weighted tree can be ordinally embed-
ded intod-dimensional̀ 2 space with relaxatioñO(n1/d).

Proof. Let T = (V (T ), E(T )) be an unweighted tree with
|V (T )| = n. We show how to obtain an ordinal embedding
of T into d-dimensional̀ 2 space with relaxatioñO(n1/d).

We construct a new treeT ′ as follows. Initially, we set
T ′0 := T . For i = 1, . . . , n1/d, we repeat the following
process: SetT ′i := T ′i−1. For any leafv of T ′i−1, we remove
v from T ′i . Let T ′ := T ′

n1/d .
Define the functionp : V (T ) → V (T ′), such that for

anyv ∈ V (T ) \ V (T ′), p(v) is the node inV (T ′), which is
closest tov, and for anyv ∈ V (T ′), p(v) = v. It is easy to
see that for every leafv of T ′, there are at leastn1/d nodes
u ∈ V (T ) \ V (T ′), with p(u) = v. Thus, the number of
leaves ofT ′ is at mostn

d−1
d .

It follows that using Gupta’s algorithm [17], we can
compute an expansive metric embeddingφ′ of T ′ into d-
dimensional̀ 2 space with distortion at mostkn1/d, for some
k = polylog(n). To obtain an embeddingφ of T , we simply
setφ(v) = φ′(p(v)) for eachv ∈ V (T ).

It remains to show thatφ′ has ordinal relaxation
Õ(n1/d). Let v1, v2, v3, v4 ∈ V (T ), with v3 6= v4 and

dT (v1, v2) > (2 + k)n1/ddT (v3, v4).

We have

‖φ(v1)− φ(v2)‖ = ‖φ′(p(v1))− φ′(p(v2))‖
≥ dT ′(p(v1), p(v2))

≥ dT (v1, v2)− 2n1/d

> (2 + k)n1/ddT (v3, v4)− 2n1/d

≥ kn1/ddT (v3, v4)

≥ kn1/ddT ′(p(v3), p(v4))
≥ ‖φ′(p(v3))− φ′(p(v4))‖
= ‖φ(v3)− φ(v4)‖.

Thus, we obtain thatφ has ordinal relaxation at most(2 +
k)n1/d = Õ(n1/d). 2

Next we prove the worst-case lower bound. The main
novelty here is a new packing argument for bounding relax-
ation. LetF (m,L) denote them-spider with arms of length
L, that is, anm-star with each edge refined into a path of
lengthL.

LEMMA 7.1. Any ordinal embedding ofF (m,L) into d-
dimensional̀ 2 space requires relaxationΩ(min{L, m1/d}).

Proof. Let T = F (m,L), and letr ∈ V (T ) be the only
vertex of T with degree greater than2. For any i, with
0 ≤ i ≤ L, let Ui = {v ∈ V (T ) | dT (r, v) = i}.

Consider an optimal embeddingφ : V (T ) → Rd with
relaxationα. We define

µi = min
u,v∈V (T )

{‖φ(u)− φ(v)‖ | dT (u, v) = i},

λi = max
u,v∈V (T )

{‖φ(u)− φ(v)‖ | dT (u, v) = i}.

Observe that, ifµ2L = 0, then there existu, v ∈ UL such
thatφ(u) = φ(v). It follows that, if α < 2L, then for any
{x, y} ∈ E(T ), φ(x) = φ(y), which implies that all the
vertices are mapped to the same point, and thusα = Ω(L).

It remains to show that the assertion is true in the case
µ2L > 0. Consider the nodes ofUL. For anyu, v ∈ UL, we
havedT (u, v) = 2L, and thus‖φ(u) − φ(v)‖ ≥ µ2L. For
anyv ∈ UL, let Bv be the ball of radiusµ2L/2 centered at
φ(v). It follows that, for anyu, v ∈ UL, the ballsBu, Bv can
intersect only on their boundary. Thus,∣∣∣∣∣ ⋃

v∈UL

Bv

∣∣∣∣∣ =
∑

v∈UL

|Bv|

= Ω(mµd
2L)

By a packing argument, we obtain that there existu, v ∈ UL

such that‖φ(u)− φ(v)‖ = Ω(m1/dµ2L), which implies

λ2L = Ω(m1/dµ2L).(7.1)

Now consider two nodesu, v ∈ UL such that‖φ(u) −
φ(v)‖ = λ2L, and letp be the path fromu to v in T . It
follows that there exist nodesx, y ∈ p with dT (x, y) =
2L/α and‖φ(x)− φ(y)‖ ≥ λ2L/α. Thus

λ2L/α ≥ λ2L

α
.(7.2)

Also, by the definition of the ordinal relaxation, we have

µ2L > λ2L/α.(7.3)

Combining (7.1), (7.2), and (7.3), we obtainαλ2L/α =
Ω(m1/dµ2L) = Ω(m1/dλ2L/α). Thus we have shown that,
if µ2L > 0, thenα = Ω(m1/d). The lemma follows. 2

THEOREM 7.2. For any n > 0 and anyd ≥ 2, there is a
tree T on n nodes for which every ordinal embedding has
relaxationΩ(n1/(d+1)).

Proof. The theorem follows from Lemma 7.1, forT =
F (nd/(d+1), n1/(d+1)). 2

8 Arbitrary Metrics into Low Dimensions
By Lemma 3.1, a generalO(lg n) upper bound on relaxation
carries over from metric embeddings of anyn-point metric



space intoO(lg n)-dimensional Euclidean space, using the-
orems of Bourgain and of Johnson and Lindenstrauss. For
metric distortion, this bound is tight [27], but one might sus-
pect that the ordinal relaxation can be smaller. Here we show
that it cannot be much smaller: somen-point metric spaces
require relaxationΩ(log n/ log log n). This claim is a spe-
cial case of the following result.

THEOREM 8.1. There is an absolute constantc > 0 such
that, for everyd andn, there is a metric spaceT onn points
such that the relaxation of any ordinal embedding ofT into
d-dimensional Euclidean space is≥ log n

log d+log log n+c − 1.

The proof is based on two known results. The first is a
bound of Warren on the number of sign patterns of a system
of real polynomials. The second is the existence of dense
graphs with no short cycles. We first state these two results.

Let Pj = Pj(x1, . . . , x`), j = 1, . . . ,m, be m real
polynomials. For a pointu = (u1, . . . , u`) ∈ R`, the
sign patternof thePj ’s at u is them-tuple (ε1, . . . , εm) ∈
(−1, 0, 1)m, whereεj = signPj(u). Let s(P1, P2, . . . , Pm)
denote the total number of sign patterns of the polynomials
P1, P2, . . . , Pm, asu ranges over all points ofR`.

The following result is derived in [2] as a slight modifi-
cation of a theorem of Warren [33].

THEOREM 8.2. Let P1 . . . Pm be m real polynomials in`
real variables, and suppose the degree of eachPj does not
exceedk. If 2m ≥ `, thens(P1 . . . Pm) ≤ (8ekm/`)`.

The following statement follows from a result of Erdős
and Sachs [14], and can be also proved directly by a simple
probabilistic argument.

LEMMA 8.1. For every g ≥ 3 and everyn ≥ 3, there
are (connected) graphs onn vertices with at least14n1+1/g

edges, and with no cycle of length at mostg.

We note that there are slightly better known results based on
certain algebraic constructions, but for our purpose here the
above estimate suffices.

We can now prove Theorem 8.1. Throughout the proof
and the rest of the section, we assume thatn is large,
whenever this is needed, and omit all floor and ceiling signs
whenever these are not crucial.

Proof. (of Theorem 8.1): Without trying to optimize the
constants, defineg = log n

log d+log log n+5 . We will show that
somen-point metric spaces require relaxation at leastg − 1.
Without loss of generality, assumeg − 1 is bigger than1, as
otherwise there is nothing to prove. By Lemma 8.1, there
is a graphG = (V,E) on a setV = {1, 2, . . . , n} of n
labeled vertices, withm ≥ 1

4n1+1/g > 7nd log n edges,
and with no cycles of length at mostg. For every subset
E′ ⊂ E of preciselym/2 edges, the subgraph(V,E′) of G
defines a metric spaceT (E′) on the setV (if the subgraph
is disconnected, some distances can be defined to be infinite;
alternatively, we can fix a spanning tree inG and include it
in all subgraphs to make sure they are all connected). This

gives us a collection of2(1+o(1))m metric spaces onV , with
the following property.

(*) For every two distinct spaces(T, d) and (T ′, d′) in the
collection, there are two pairs of pointsx, y andz, w so that
d(x, y) = 1 andd′(x, y) > g − 1, whereasd′(z, w) = 1 and
d(z, w) > g − 1.

Indeed, this follows from the fact that, for every two
distinct subgraphs in our collection, there is an edge{x, y}
belonging to the first one and not to the second, and vice
versa. As the shortest cycle inG is of length exceedingg−1,
the claim in (*) follows.

Fix a spaceT is our collection, and letφT be a minimum
relaxation embedding of it intod-dimensional Euclidean
space. LetφT (i) = (xT

i,1, . . . , x
T
i,d). Then the square

of the Euclidean distance between each two points in the
embedding can be expressed as a polynomial of degree2
in the dn variablesxT

i,j . The difference between two such
squares of distances is thus also a polynomial of degree2 in
these variables. It follows that the order of all

(
n
2

)
distances

is determined by the signs of
(
n
2

)2
< n4/4 polynomials of

degree2 each, indn variables. By Theorem 8.2, the total
number of such orders is at most(

16en4

4dn

)dn

≤ n(3+o(1))dn = 2(3+o(1))nd log n.

This is smaller than the number of spaces in our collection,
and hence, by the pigeonhole principle, there are two distinct
spacesT andT ′ in our collection, so that the orders of the
distances in their embeddings are the same. This, together
with (*), implies that the relaxation in at least one of these
embeddings is at leastg − 1, completing the proof. 2

The last proof easily extends to embeddings intod-
dimensional̀ p space for any even integerp. The only dif-
ference is that, in this case, thepth power of the distance
between a pair of given points in the embedding is a polyno-
mial of degreep in the dn variables describing the embed-
ding. Working out the computation in the proof above, this
yields the following result.

THEOREM 8.3. There is an absolute constantc > 0 such
that, for everyd and n, and for every even integerp, there
is a metric spaceT on n points such that the relaxation in
any ordinal embedding ofT into d-dimensional̀ p space is
at least log n

log d+log(log n+log p)+c − 1.

The above argument, combined with an additional trick,
can in fact be extended to handle ordinal embeddings into
d-dimensional̀ p space for odd integersp, as well as embed-
dings intod-dimensional̀ ∞ space.

THEOREM 8.4. (i) For every n ≥ d, there is a metric
spaceT on n points such that the relaxation in any ordinal
embedding ofT in d-dimensional`∞ space is at least

log n
log d+log log n+O(1) − 1.



(ii) For everyn ≥ d, and for every odd positive integer
p, there is a metric spaceT on n points such that the
relaxation of any ordinal embedding ofT into d-dimensional
`p space is at least log n

log(2d2+3d log n+d log p+O(d)) − 1.

Proof. As before, the result is proved by a counting argu-
ment: we prove that the number of possible orders between
all distances in a set ofn points in the relevant spaces is not
too large, and use the fact that there are many significantly
different metric spaces onn points, concluding that for two
such metric spaces the embedding orders the distances iden-
tically, and hence deriving the required lower bound on re-
laxation.

(i) We start by bounding the number of possible orders of all
distances in a setX of n points ind-dimensional̀ ∞ space.
Given such a set, define, for each ordered set(x, y, z, w)
of (not necessarily distinct) four points ofX, and for each
two indicesi, j in {1, 2, . . . , d}, the following linear polyno-
mial in thedn variables representing the coordinates of the
points: (xi − yi) − (wj − zj). By Theorem 8.2 thesed2n4

polynomials have at most(O(1)dn3)dn ≤ 2(4+o(1))dn log n

sign patterns. (In fact, because the polynomials here are
linear, there is a slightly better, and simpler, estimate than
the one provided by Warren’s Theorem here—see [18]—
but the asymptotic of the logarithm in this estimate is the
same.) We claim that the signs of all these polynomials de-
termine completely the order on all the

(
n
2

)
distances be-

tween pairs of the points. Indeed, the signs of the polyno-
mials(xi− yi)− (xj − yj), (xi− yi)− (yj − xj) (and their
inverses) determines a coordinatei such that||x − y||∞ is
xi − yi or yi − xi (as this is simply the maximum of all2d
differences of the form(xi − yi), (yi − xi)). Suppose, now,
that ||x− y||∞ = xi − yi and||w − z||∞ = wj − zj . Then
the sign of(xi−yi)−(wj−zj) determines which of the two
distances is bigger. It follows that the total number of orders
of the distances ofn points ind-dimensional̀ ∞ space is at
most2(4+o(1))dn log n.

Defineg = log n
log d+log log n+5 , take a graphG = (V,E)

as in the proof of Theorem 8.1, and construct a collection
of 2(1+o(1))7nd log n metric spaces on a set ofn points
satisfying (*). The desired result follows, just as in the proof
of Theorem 8.1.

(ii) As in the proof of part (i), we first bound the number of
possible orders of all distances in a setX of n points ind-
dimensional̀ p space. Given such a set, define, for each two
(not necessarily distinct) pairs{x, y} and{z, w} of points,
and each two sign vectors

(ε1, ε2, . . . , εd), (δ1, δ2, . . . , δd) ∈ {−1, 1}d,

the following polynomial in thedn coordinates of the points:

d∑
i=1

εi(xi − yi)p −
d∑

j=1

δj(zj − wj)p.

This is a set of22dn4 polynomials, each of degreep, and
thus, by Theorem 8.2, the number of their sign patterns is

bounded by

(8.4) 22d2n+3dn log n+dn log p+O(dn).

As before, it is not difficult to see that the signs of
all these polynomials determine completely the order of all
distances between pairs of points. Therefore, the number
of such orders does not exceed (8.4). The desired result
now follows as before, by considering metrics induced by
subgraphs with half the edges of a graph onn vertices with
at least14n1+1/g edges, and no cycles of length at mostg,
whereg = log n

log(2d2+3d log n+d log p+O(d)) . 2

9 Conclusion and Open Problems
We have introduced minimum-relaxation ordinal embed-
dings and shown that they have distinct and sometimes sur-
prising behavior. Yet many problems remain to be explored
in this context; our hope is that this paper forms the founda-
tion of a fruitful body of research. Here we highlight some
of the more important directions for future exploration.

An important line of study is to continue comparing or-
dinal embeddings with metric embeddings. One interesting
question is whether the dimensionality-reduction results of
Bourgain [8] and Johnson and Lindenstrauss [23] can be im-
proved for ordinal relaxation. From Theorem 8.1 and Propo-
sition 3.1, we know that the optimal worst-case relaxation
for an ordinal embedding of a general metric intoO(lg n)-
dimensional Euclidean space is betweenΩ(lg n/ lg lg n) and
O(lg n). Closing thisΘ(lg lg n) gap is an intiguing open
problem; a better upper bound would improve on Bourgain-
based metric embeddings intoO(lg n) dimensions. Another
problem is how much relaxation is required for dimension-
ality reductionof a metric already embedded in arbitrary di-
mensional̀ p space. Forp ≥ 2, we obtain an ideal relaxation
of 1 + ε using Johnson-Lindenstrauss combined with Propo-
sition 3.1. Forp < 2, the problem is open; in contrast, it is
known for metric embeddings that dimensionality reduction
is impossible for̀ 1 [9, 26]. The universality of̀ p metrics
for ordinal embedding in Theorem 4.1 suggests that an im-
provement might be possible.

Another important direction is to develop more approxi-
mation algorithms for minimum-relaxation ordinal embed-
ding. Unlike general upper bounds on distortion, exist-
ing approximation algorithms for minimum-distortion met-
ric embedding do not carry over to ordinal embedding be-
cause the optimum solution is generally smaller. OurO(1)-
approximation result in Section 5, and the lack of a matching
result for metric embedding despite much effort, shows that
in some contexts ordinal embedding problems may prove
more easily approximable than metric embedding. We ex-
pect that our approximation result can be generalized us-
ing similar techniques to unweighted graphs, weighted trees,
and/or higher dimensions, and that it can be strengthened
to a PTAS. A related open problem is to consider trees as
target metrics, and find the tree metric into which a given
metric can be ordinally embedded with approximately mini-
mum relaxation. Another family of approximation problems



arise with the related notion ofadditive relaxation, in con-
trast to (multiplicative) relaxation, where pairs of distances
within an additiveα must have their relative order preserved.
In some cases, approximation results may be harder for or-
dinal embedding than metric embedding. For example, in
the problem of approximating the minimum additive dis-
tortion/relaxation for an ordinal embedding of an arbitrary
metric into the line, the simple greedy algorithm of Proposi-
tion 3.5 is a3-approximation for metric embedding but can
be arbitrarily bad for ordinal embedding.1

A final direction to consider is finding other applica-
tions of ordinal embedding. In particular, in the context of
approximation algorithms for other problems, when are low-
relaxation ordinal embeddings as useful as (and more power-
ful than) low-distortion metric embeddings? Nearest neigh-
bor is a simple example where only the order of distances is
relevant, but we expect there are several other such problems.
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