Ordinal Embeddings of Minimum Relaxation: General Properties, Trees, and Ultrametrics

Noga Alon (Tel Aviv University) Mihai Bădoiu (MIT)
Erik D. Demaine (MIT)
Martín Farach-Colton (Rutgers University)
MohammadTaghi Hajiaghayi (MIT)
Anastasios Sidiropoulos (MIT)

Embeddings of Metric Spaces

- Given a finite metric space (X,D)
- $D(p, q)=0 \Leftrightarrow p=q$
- $D(p, q)=D(q, p)$
- $D(p, q) \leq D(p, r)+D(r, q)$
\square Mapping $f: X \rightarrow Y$
- Distortion of f is:

$$
\max _{p, q} \frac{D^{\prime}(f(p), f(q))}{D(p, q)} \times \max _{p, q} \frac{D(p, q)}{D^{\prime}(f(p), f(q))}
$$

Goal: Minimize distortion

Metric Embedding - Example

distortion $=5 \cdot(1 / 3)=5 / 3$
\square Compact data representation
\square Embedding into algorithmically good spaces (e.g. Euclidean spaces, trees)

- Visualization / Clustering

Results on Low-Distortion Embeddings

\square Worst-case bounds

- Any n-point metric into Euclidean space with O ($\log \mathrm{n}$) distortion. [Bourgain 1985]
- $\Omega(\log n)$ bound. [Linial, London, Rabinovich 1995]
- Approximation algorithms
- Any n-point metric into ℓ_{2} with OPT distortion. [Linial, London, Rabinovich 1995]
- Unweighted graphs into line, with $\mathrm{O}\left(\mathrm{OPT}^{2}\right)$, etc. [Bădoiu, Dhamdhere, Gupta, Rabinovich, Raecke, Ravi, S. 2005], also [Bădoiu,Indyk,Rabinovich,S. 2004]
- General metrics into Trees (additive) [Agarwala, Bafna, Farach, Narayan, Paterson, Thorup 1999]

Ordinal Embeddings

\square Relax constraints on embedded lengths:

- Ignore exact distances
- Require only the total order on the distances to match between source and target metrics
- Such an embedding called ordinal embedding
- "Normal" embedding called metric embeddings

Ordinal Embeddings - Example

Ordinal Embeddings - Motivation

\square Sometimes order is all that matters
\square Nearest neighbors

- Preserved by ordinal embedding
\square Visualization
- Distinguish large from small distances.
- Classical approach in Visualization/MDS in early 60s.

Known Results on Ordinal Embedding

- NP-hard to decide whether a distance matrix can be ordinally embedded into a tree metric [Shah \& Farach-Colton 2004]
\square A metric is an ultrametric iff it requires n-1 dimensions [Holman 1972]
- Every distance matrix on n points can be ordinally embedded into ($n-1$)dimensional Euclidean space, and almost every distance matrix requires $\Omega(\mathrm{n})$ dimensions [Bilu \& Linial 2004]

Relaxing ordinal embeddings

\square Instead preserving the total order, preserve a partial order.

Question:
Which orders should we preserve?

Ordinal Relaxation

\square Analog to metric distortion
\square Embedding f has relaxation $\alpha \geq 1$ if

- $\alpha \cdot D(x, y)<D(z, w) \Rightarrow D^{\prime}(f(x), f(y))<D^{\prime}(f(z), f(w))$
\square I.e., must preserve the order between distances that are different by a factor of more than α
\square Note: $\alpha \leq c$

Goal: Minimize relaxation

Ordinal relaxation - Example

relaxation $=1 \quad$ relaxation $=5 / 4$

Tie breaking

\square Uniform metric into the line:

distortion $\Omega(\mathrm{n})$ relaxation 1
relaxation 1

Our Results

\square When is it relaxation $=$ distortion?
\square Worst-case bounds of unweighted trees into d-dimensional Euclidean space

- O(1)-approximation algorithm for embedding unweighted trees into the line
- Ultrametrics into the line with relaxation 1
\square OPT for embedding into ultrametrics

Our Results (cont.)

- Worst case relaxation for embedding into ddimensional Euclidean space is at least

$$
\log n /(\log d+\log \log n+O(1))
$$

\square For d-dimensional ℓ_{p} space, for every even integer p $\log n /(\log d+\log (\log n+\log p)+O(1))$
\square For d-dimensional ℓ_{p} space, for every odd integer p

$$
\log n /\left(\log 2 d^{2}+3 d \log n+d \log p+O(d)\right)
$$

- For d-dimensional ℓ_{∞} space

$$
\log n /(\log d+\log \log n+O(1))
$$

Lower bound for $\ell_{2}{ }^{\mathrm{d}}$

- Let P_{1}, \ldots, P_{m} be m polynomials of degree at most k, on t real variables. If $2 m \geq t$, then the number of sign-patterns of $\left(P_{1}, \ldots, P_{m}\right)$ is at most (8ekm/t) . [Alon 1995]
- For every $g \geq 3, n \geq 3$, there are n-vertex graphs with at least $\mathrm{n}^{1+1 / 9 / 4}$ edges, and girth at least g. [Erdős, Sachs 1963]

Lower bound for $\ell_{2}{ }^{\mathrm{d}}$ (cont.)

\square In Euclidean embedding:

- Each edge-edge order is specified by a quadratic equation.
- There are $\mathrm{n}^{4} / 4$ such order polynomials on nd variables.
- Therefore there are few possible orderings in our target space.

Lower bound for $\ell_{2}{ }^{\mathrm{d}}$ (cont.)

- Since there exists a dense high-girth graph, it has many subgraphs with of $\mathrm{m} / 2$ edges,

$$
\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots
$$

- By PHP, two such graphs must end up with same ordering.

Lower bound for $\ell_{2}{ }^{d}$ (cont.)

- Thus, relaxation >

$$
g-1=\log n /(\log d+\log \log n+5)-1
$$

Unweighted Trees into R^{d}

- Theorem: Any unweighted tree can be embedded into d-dimensional Euclidean space with relaxation $\tilde{O}\left(n^{1 / d}\right)$.
- Theorem: There is a tree for which every embedding has relaxation $\Omega\left(n^{1 /(d+1)}\right)$.
\square Any tree can be embedded into ddimensional euclidean space with distortion $\mathrm{O}\left(\mathrm{n}^{1 /(d-1)}\right)$. [Gupta 2000]
\square Any embedding of the n-star has distortion $\Omega\left(\mathrm{n}^{1 / d}\right)$.

Unweighted Trees into R^{d}

Unweighted Trees into R^{d}

Unweighted Trees into R^{d}

Unweighted Trees into R^{d}

Repeat $\mathrm{n}^{1 / \mathrm{d}}$ times.
$O\left(n^{(d-1) / d}\right)$ leaves.

Using [Gupta 2000]
Õ($\mathrm{n}^{1 / d}$) distortion.

Unweighted Trees into R^{d}

Map every subtree into its root

\Longrightarrow
Õ $\left(\mathrm{n}^{1 / d}\right)$ relaxation

Approximation Algorithm for Unweighted Trees into the Line
\square Theorem: There is a 3-approximation poly-time algorithm for minimizing relaxation of ordinal embedding of an unweighted tree into line.
\square In contrast, best approximation algorithm for minimum-distortion embedding is $\tilde{O}\left(\mathrm{n}^{\circ}\right.$ $\left.{ }^{(1)}\right)$-approximation. [Bădoiu,Dhamdhere, Gupta,Rabinovich,Raecke,Ravi,S. 2005], also [Bădoiu,Indyk,Rabinovich,S. 2004]

Approximation Algorithm for Unweighted Trees into the Line

- Lower bound: 3-spider

\Rightarrow relaxation $\Omega(\mathrm{n})$

Approximation Algorithm for Unweighted Trees into the Line

Approximation Algorithm for Unweighted Trees into the Line

\square Find longest 3-spider

Approximation Algorithm for Unweighted Trees into the Line

ㅁ Find longest 3-spider, embed longest hair

Approximation Algorithm for Unweighted Trees into the Line

\square Find longest 3-spider, embed longest legs

Map remaining subtrees into their roots

Conclusions - Open problems

\square Worst case relaxation for embedding into $\mathrm{O}(\log \mathrm{n})$-dimensional Euclidean space is $\Omega(\log n / \log \log n)$, and $O(\log n)$.
\square Dimensionality reduction in ℓ_{1} ?

- Approximation algorithms

