Optimal stochastic planarization

Anastasios Sidiropoulos (Toyota Technological Institute)

Metric embeddings

[Bourgain '85]

[Alon, Karp, Peleg, West'91], [Bartal'96], [Bartal'98], [Fakcharoenphol, Rao, Talwar'03]

Topological simplification

- Topological simplification of a metric space M=(X,D)
- Low distortion embeddings
 - Mapping $f: X \rightarrow Y$
 - Preserve distances up to small distortion
- Relaxation: Stochastic embeddings
 - Random mapping $f: X \rightarrow Y$
 - Preserve distances in expectation

Stochastic embeddings: example

Deterministic embedding of the cycle into R¹

Randomization: Cut an edge at random!

Pr[edge is cut] = 1/nIf {x,y} is cut, thenD'(x,y)=n-1

Stochastic embeddings

- Finite metric space M=(X,D)
- Distribution $\Phi = \{(M_1, f_1), \dots, (M_k, f_k)\}$

$$-M_i=(X_i,D_i)$$

$$-f_i: X \longrightarrow X_i$$

such that \forall u,v \in X,

$$- \forall M_i \subseteq F, D_i(u,v) \ge D(u,v)$$

$$-\mathbf{E}_{N} \in_{\mathsf{F}} [\mathsf{D}_{N}(\mathsf{f}(\mathsf{u}), \mathsf{f}(\mathsf{v}))] \leq \mathbf{\alpha} \cdot \mathsf{D}(\mathsf{u},\mathsf{v})$$

 α : distortion

What about simpler graphs?

- n×n grid → tree: Ω(log n)
 [Alon,Karp,Peleg,West'91]
- planar → O(1)-treewidth: Ω(log n)
 [Carroll,Goel'04]
- genus-g → planar:
 - 2^{O(g)} [Indyk, S '07]
 - g^{O(1)} [Borradaile, Lee, S '09]
 - $O(\log g) [S'10]$
 - $-\Omega(\log g)$ [Borradaile, Lee, S '09]

Implications: Approximations algorithms

Let A be a minimization problem, s.t. the objective depends linearly on the distances of the input metric.

(e.g. Distance Oracles, MST, TSP, k-Median, Clustering, Metric Labeling, etc.)

Theorem [S '10]

If there exists an α -approx. for A on planar graphs, then there exists an $O(\alpha \log g)$ -approx. on genus-g graphs.

Implications: Sparsest-Cut

```
gap(G) = \max_{cap,dem} sparsest-cut / max-concurrent-flow
c<sub>1</sub>(G) = \inf\{c : G \text{ embeds into } L_1 \text{ with distortion } c\}
```

Theorem [Linial,London,Rabinovich'95] [Aumann,Rabani'98] For every graph G, $gap(G)=c_1(G)$

```
Corollary [Lee, S '09], [S '10]

gap(genus-g) = O(log g) · gap(planar)
```

Orientable surfaces

Random cuts

Random cuts

- •Pr[edge is cut] = 1/L
- •If $\{x,y\}$ is cut, then D'(x,y)=O(L)

- Repeating g times gives a planar graph [Indyk,S'07]
- Distortion 2^{O(g)}

The peeling lemma

Peeling Lemma [Lee, S'09]

 $A \cup B$ stochastically O(1)-embeds into 1-sums of A with B

Homotopy generators

- Greedy system of loops [Erickson, Whittlesey'05]
 - Set H of cycles s.t. G\H is planar

Fact: H consists of O(g) shortest paths with a common end-point.

The pathwidth barrier

• Lemma: [Lee, S '10]

The cut graph **H** embeds into a pathwidth-**O(g)** graph, with distortion **O(1)**.

Unfortunately, best-known embedding of pathwidth- \mathbf{k} graphs into trees has distortion $\mathbf{2}^{\Omega(\mathbf{k})}$. [Lee, S '09]

Untangling paths

Theorem: [S '10] Let X be the union of g shortest paths in a graph G, with a common end-point.

Then, (X,d) embeds into a random tree with distortion O(log g).

The ultrametric barrier

- Essentially all known tree embeddings:
 - Compute a partition for every scale
 1,2,4,...,2ⁱ,...
 - Merge partitions into a tree.
 - The resulting tree is an ultrametric.

Key idea: Alternating partitions

- Combine two partitions at every scale:
 - Vertical partition, similar to [Klein, Plotkin, Rao'93].

- Horizontal partition, similar to [Calinescu, Karloff, Rabani'01].

Open questions

- Genus-g into spanning planar subgraphs.
- Pathwidth-k into trees with distortion O(logk)?
- Optimal embeddings for graphs that exclude a minor H, in terms of |H|.
 - Only $\Omega(\log |H|)$ lower bounds are known.
 - Almost all upper bounds are super-exponential in |H|.