Optimal stochastic planarization

Anastasios Sidiropoulos (Toyota Technological Institute)



Metric embeddings
[Bourgain '85]

Finite metric
spaces

[Alon,Karp,Peleg,West’91], [Bartal’96], [Bartal’98],
[Fakcharoenphol,Rao,Talwar’03]

Finite metric
spaces




Topological simplification

* Topological simplification of a metric space M=(X,D)
* Low distortion embeddings

— Mappingf: X —>Y

— Preserve distances up to small distortion
* Relaxation: Stochastic embeddings

— Random mappingf: X —> Y

— Preserve distances in expectation



Stochastic embeddings: example
* Deterministic embedding of the cycle into R?
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e Randomization: Cut an edge at random!

*Pr[edge is cut] = 1/n \ _ 1sected distortion = O(1)
“If {x,y}is cut, then o [Karp('89]
D’(x,y)=n-1



Stochastic embeddings

* Finite metric space VI=(X,D)
e Distribution ®={(M,f,),...,(M,,f,)}
~ M=(X,,D;)
—f: X=X
such that V u,v € X,
—V M. €F, D(u,v) = D(u,v)
— E ¢ [Dy(f(u), f(v))] < o - D(u,v)

o : distortion



What about simpler graphs?

* nxn grid — tree: Q(log n)
[Alon,Karp,Peleg,West’91]

e planar — O(1)-treewidth: Q(log n)
[Carroll,Goel'04]

e genus-g — planar:
— 20() [Indyk, S ‘07]
— g% [Borradaile, Lee, S ‘09]
— O(log g) [S ‘10]
— Q(log g) [Borradaile, Lee, S ‘09]



Implications: Approximations algorithms

Let A be a minimization problem, s.t. the objective
depends linearly on the distances of the input

metric.

(e.g. Distance Oracles, MST, TSP, k-Median,
Clustering, Metric Labeling, etc.)

Theorem [S '10]

If there exists an a-approx. for A on planar graphs,
then there exists an O(a log g)-approx. on genus-g
graphs.



Implications: Sparsest-Cut

gap(G) = max ,, 4em SParsest-cut / max-concurrent-flow

¢,(G) = inf{c : G embeds into L, with distortion c}

Theorem [Linial,London,Rabinovich’95] [Aumann,Rabani’98]
For every graph G, gap(G)=c,(G)

Corollary [Lee, S ‘09], [S “10]
gap(genus-g) = O(log g) - gap(planar)



Orientable surfaces
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Random cuts
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Random cuts

*Pr[edge is cut] = 1/L

If {xy}is cut, then D’(x.y)=O(L) —> expected distortion = O(1)

* Repeating g times
gives a planar graph
[Indyk,S’07]

e Distortion 2°(8)
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The peeling lemma

decomposable

Peeling Lemma [Lee, S '09]
A U B stochastically O(1)-embeds into 1-sums of A with B
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Homotopy generators

* Greedy system of loops [Erickson,Whittlesey’05]
— Set H of cycles s.t. G\H is planar

(DY) —

Fact: H consists of O(g) shortest paths with a
common end-point.
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The pathwidth barrier

e Lemma: [Lee, S'10]

The cut graph H embeds into a pathwidth-O(g)
graph,with distortion O(1).

Unfortunately, best-known embedding of
pathwidth-k graphs into trees has distortion
29K TLee, S’09]



Untangling paths

Theorem: [S ‘10] Let X be the union
of g shortest paths in a graph G,
with a common end-point.

Then, (X,d) embeds into a random
tree with distortion O(log g).
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The ultrametric barrier

* Essentially all known tree

embeddings: 0—0—0—0—0—0—00

— Compute a partition for every scale
1,2,4,...,2},...

— Merge partitions into a tree.
— The resulting tree is an ultrametric.

* Any embedding of the n-path into
a random ultrametric has
distortion Q(log n).



Key idea: Alternating partitions

* Combine two partitions at every scale:
— Vertical partition, similar to [Klein,Plotkin,Rao’93].




Open questions

* Genus-g into spanning planar subgraphs.
e Pathwidth-k into trees with distortion O(logk)?

* Optimal embeddings for graphs that exclude a
minor H, in terms of |H].

— Only Q(log |H|) lower bounds are known.
— Almost all upper bounds are super-exponential in |H]|.



