Approximation Algorithms for Embedding General Metrics Into Trees

Mihai Badoiu (MIT)
Piotr Indyk (MIT)

Anastasios Sidiropoulos (MIT)

Metric Embeddings

- Given finite **metric space** M=(X,D), M'=(Y,D')
- Mapping $f: X \rightarrow Y$
- **Distortion** of *f* is

$$\max_{x_1, x_2} \frac{D'(f(x_1), f(x_2))}{D(x_1, x_2)} \times \max_{y_1, y_2} \frac{D(y_1, y_2)}{D'(f(y_1), f(y_2))}$$

GOAL: minimize distortion

Two kinds of problems:

- Worst-case embeddings
- Relative embeddings

Relative Embeddings - Known Results

From	Into	Upper	Lower	Citation
General	L ₂	С		[Linial,London,Rabinovich 94]
Unweighted graphs	Line	O(c ²)	1.01 <i>c</i>	[Badoiu,Dhamdhere,Gupta, Rabinovich,Raecke,Ravi,S.'05]
Unweighted trees	Line	O(c ^{3/2})		[Badoiu,Dhamdhere,Gupta, Rabinovich,Raecke,Ravi,S.'05]
General	Line	$O(\Delta^{3/4}c^{11/4})$		[Badoiu,Chuzhoy,Indyk,S.'05]
Trees	Line	c ^{O(1)}	$\Omega(n^{1/12}c)$	[Badoiu,Chuzhoy,Indyk,S.'05]
Ultrametrics	R ^d	C ^{O(d)}	NP- complete	[Badoiu,Chuzhoy,Indyk,S.'06]
Unweighted graphs	Sub-trees	O(c logn)	Ω(c)	[Emek,Peleg'04]

Motivation

Computational Biology: Phylogenetic Reconstruction

Computer Networks: Tree-Spanners for weighted complete graphs

Our Results

- Embedding unweighted graphs into trees, with distortion O(c).
- Embedding general metrics into trees, with distortion
 a*(poly(c)*log(n))^{logΔ/log(a)}, for any a>1 (Δ: spread)

– Setting
$$a = 2^{\sqrt{\log \Delta}}$$
 , distortion $(c \cdot \log n)^{O(\sqrt{\log \Delta})}$

– When Δ =n^{O(1)}, setting a=n $^{\varepsilon}$, distortion $n^{\epsilon}(c\log n)^{O(1/\epsilon)}$

By [Matousek'90], implies O(n¹-b)-approximation

 Composing with algorithm of [Badoiu,Chuzhoy,Indyk,S.'05], for embedding trees into the line, we obtain an algorithm for embedding general metrics into the line, with the above guarantees.

Our Results (cont.)

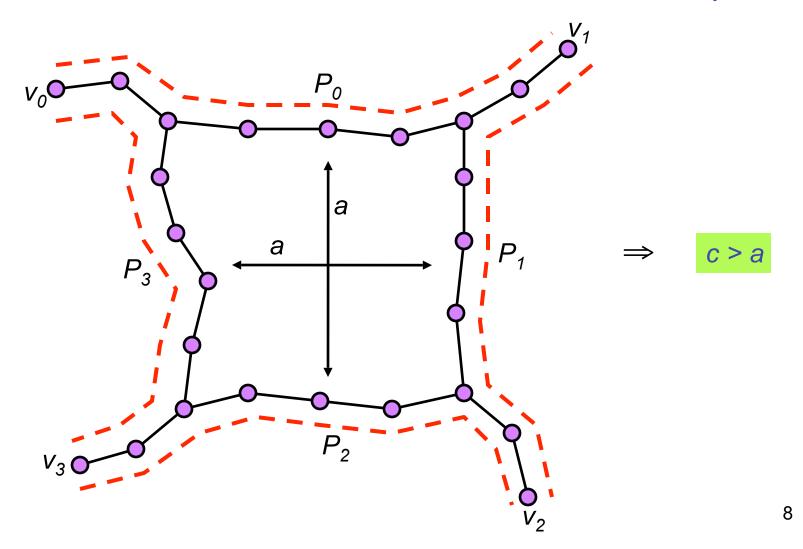
Trees vs. Sub-trees:

- If an unweighted graph embeds into a tree with distortion c, then it embeds into a sub-tree with distortion O(c logn).
- There exist graphs that embed with distortion c into a **tree**, and any embedding into a **sub-tree** requires distortion $\Omega(c \log n / \log \log n)$.

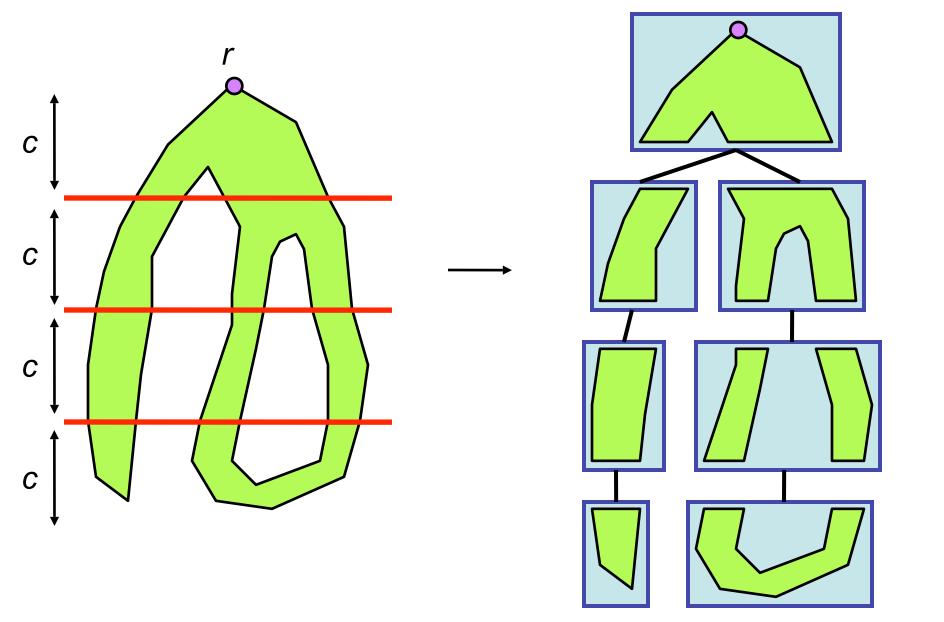
Part 1: Unweighted Graphs

A Forbidden Structure (cont.)

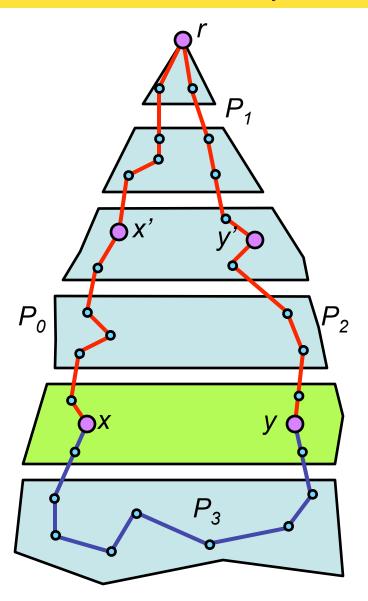
If there exists v_0 , v_1 , v_2 , v_3 , and P_0 , P_1 , P_2 , P_3 , s.t. $D(P_i, P_j) > a$:



Tree-Like Decompositions



Tree-Like Decompositions: Small Diameter



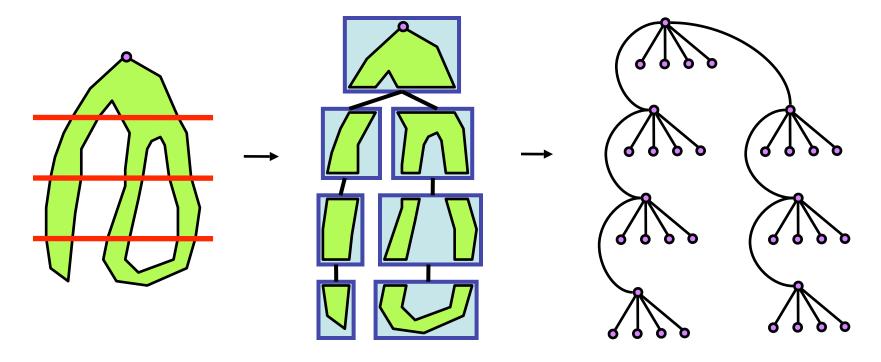
If D(x,y) > 10 c, then P_0 , P_1 , P_2 , P_3 , form a forbidden structure.

 \Rightarrow

The diameter of each cluster is O(c).

The Algorithm

- 1. Compute tree-like decomposition
- 2. Replace each cluster with a star
- 3. Connect the stars in a tree

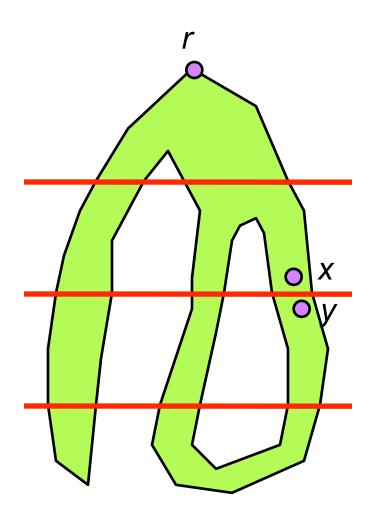


Distortion O(c)

Part 2: General Metrics

Tree-Like Decompositions do not work

Obstacle: Clusters small-diameter might be arbitrarily close



$$D(x,y)=\varepsilon$$

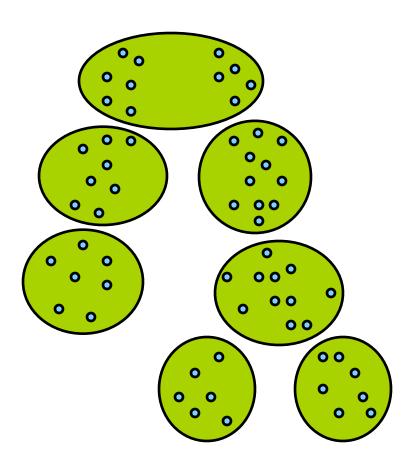
Question: How to deal with different scales?

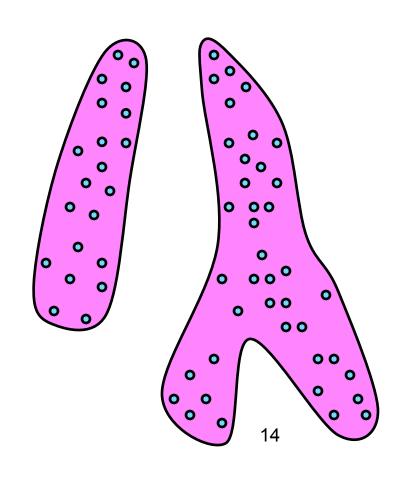
Well-Separated Tree-Like Decompositions

Idea: Use 2 decompositions

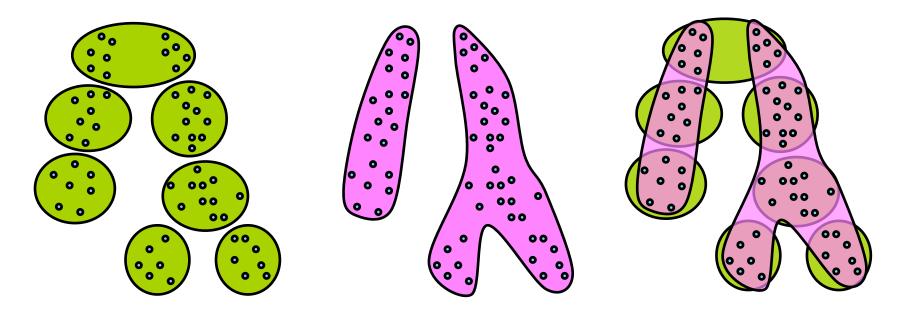
Small-diameter decomposition

Well-separated decomposition





Well-Separated Tree-Like Decompositions



Properties:

- Clusters of well-separated decomposition are subtrees of the small-diameter decomposition.
- These subtrees have small intersection.

The Algorithm

- 1. Compute well-separated, tree-like decomposition
- 2. Recurse inside each well-separated cluster
- 3. Merge solutions using the tree-like decomposition

Analysis:

- At every recursive iteration, we reduce the maximum edge weight by a.
- At each iteration, we accumulate distortion poly(c)*log(n) in the merging step.
- Resulting distortion a*(poly(c)*log(n))^{log∆/log(a)}

Setting
$$a = 2^{\sqrt{\log \Delta}}$$

Distortion:
$$(c \cdot \log n)^{O(\sqrt{\log \Delta})}$$

The End

Can we do better? Poly(c) distortion?

Other forbidden-structure characterizations of tree-embedability?