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ABSTRACT
We study the problem of minimum-distortion embedding of ultra-
metrics into the plane and higher dimensional spaces. Ultrametrics
are a natural class of metrics that frequently occur in applications
involving hierarchical clustering. Low-distortion embeddings of
ultrametrics into the plane help visualizing complex structures they
often represent.

Given an ultrametric, a natural question is whether we can ef-
ficiently find an optimal-distortion embedding of this ultrametric
into the plane, and if not, whether we can design an efficient algo-
rithm that produces embeddings with near-optimal distortion. We
show that the problem of finding minimum-distortion embedding of
ultrametrics into the plane is NP-hard, and thus approximation al-
gorithms are called for. Given an input ultrametric M , let c denote
the minimum distortion achievable by any embedding of M into the
plane. Our main result is a linear-time algorithm that produces an
O(c3)-distortion embedding. This result can be generalized to em-
bedding ultrametrics into <d, for any d ≥ 2, with distortion cO(d),
where c is the minimum distortion achievable for embedding the
input ultrametric into <d.

Additionally, we show that any ultrametric can be embedded into
the plane with distortion O(

√
n), and in general, into <d with dis-

tortion dO(1)n1/d. Combining the two results together, we obtain
an O(n1/3)-approximation algorithm for the problem of minimum-
distortion embedding of ultrametrics into the plane.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms
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Ultrametrics, Embedding, Approximation Algorithms.
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1. INTRODUCTION
Given two metrics spaces M = (X, D) and M ′ = (X ′, D′), a

non-contracting embedding of M into M ′ is a mapping f : X →
X ′, such that for any pair p, q ∈ X , D(p, q) ≤ D′(f(p), f(q)).
Given an embedding f : X → X ′, we say that the distortion of f
is c, if f is non-contracting, and c is the maximum, over all pairs
of points p, q ∈ X , of D′(f(p), f(q))/D(p, q). Low-distortion
embeddings have been a subject of extensive mathematical studies,
and found numerous applications in computer science (cf. [17, 14]).

Most of the research on embeddings focused on showing abso-
lute results, of the form:

Given a class of metrics C and a metric M ′, what is the
smallest distortion c ≥ 1 such that any metric M ∈ C
can be embedded into M ′ with distortion c ?

However, in many interesting cases, the worst-case distortion
over all metrics in C is too large to be interesting or meaningful.
This is especially the case for embeddings into low-dimensional
spaces, where the worst-case distortion is polynomial in the metric
size, even for very simple metrics such as an n-point star. However,
in cases where the input metric does have a good embedding into
the host metric, it would be useful to have algorithms that produce
such embeddings.

Our paper focuses on the relative version of the problem, which
involves finding embeddings whose distortion is close to optimal.
More precisely, assume we are given a fixed class of metrics C and
a host metric M ′. We are interested in designing an efficient algo-
rithm, which receives as input a metric M ∈ C, and produces an
embedding of M into M ′ with distortion at most αc, where c de-
notes the best possible distortion of an embedding of M into M ′,
and α ≥ 1 is called the approximation factor of the algorithm. We
note that α might depend on c. Figure 1 summarizes the previously
known results on relative embeddings (see also [10]).

In this paper, we explore relative embeddings into the plane (and
higher-dimensional spaces). As can be seen from Figure 1, very
little is known about this problem. The only relevant result is a 3-
approximation algorithm for embedding an n-point subset of a two-
dimensional sphere (living in <3) into the plane. More specifically,
we consider embedding ultrametrics into the plane. Ultrametrics
are a natural class of metrics, frequently occurring in applications
involving hierarchical clustering. They are of particular interest
in biology, where they can be used to represent evolutionary trees
(cf. [11] or [8], p. 168). Visualizing such trees requires embedding
them into the plane, which is exactly the problem we consider in
this paper.



Paper From Into Distortion Comments
[18] general metrics l2 c uses SDP
[15] line line c c is constant, embedding is a bijection

unweighted graphs bounded degree trees c c is constant, embedding is a bijection
[20] <3 <3 > (3 − ε)c hard to 3-approximate, embedding is a bijection
[9] unweighted graphs sub-trees O(c log n)
[7] unweighted graphs trees O(c)
[6] unweighted graphs line O(c2) implies

√
n-approximation

> ac Hard to a-approximate for some a > 1
c c is constant

unweighted trees line O(c3/2
√

log c)
subsets of a sphere plane 3c

[1] general metrics ultrametrics c
[5] general metrics line O(∆3/4c11/4)

weighted trees line cO(1)

weighted trees line Ω(n1/12c) Hard to O(n1/12)-approximate even for ∆ = nO(1)

Figure 1: Previous work on relative embedding problems for multiplicative distortion. We use c to denote the optimal distortion, n
to denote the number of points in the input metric and ∆ to denote the spread of the metric, i.e., the maximum to minimum distance
ratio. Note that the table contains only the results that hold for the multiplicative definition of the distortion; there is a rich body of
work that applies to other definitions of distortion, notably the additive or average distortion.

Our Results
Our main result is an algorithm which receives as input an ultra-
metric and outputs its embedding into the plane. If the input ultra-
metric embeds into the plane with distortion c (under lp norm for
any 1 ≤ p ≤ ∞1), then the embedding produced by the algorithm
has distortion O(c3). In particular, for the case where the input
ultrametric is embeddable into the plane with constant distortion,
the distortion of the embedding produced by the algorithm is also
constant. The running time of our algorithm is linear in the input
size, assuming it is given the value of the optimum distortion c (or
its approximation). The algorithm generalizes to embeddings into
<d (equipped with the l2 norm), and the distortion becomes cO(d),
where c is the distortion of the optimal embedding of the ultramet-
ric into <d.

In our second result we prove that any ultrametric can be em-
bedded into the plane with distortion O(

√
n). More generally, for

any d ≥ 2, we show how to embed any ultrametric into <d with
distortion dO(1)n1/d. Notice that unlike the first result, this result
relates to the absolute version of the distortion minimization prob-
lem. The proof is algorithmic - the embedding can be found in
polynomial time. Combining the two results together, we obtain an
O(n1/3)-approximation algorithm for embedding ultrametrics into
the plane.

Figure 2 summarizes the known results for the absolute ver-
sion of low-distortion embeddings into low-dimensional Euclidean
space. Note that the only previous class of weighted metrics for
which a non-trivial embedding into the plane was known was the
class of weighted stars. Our theorem strictly generalizes that result,
since any n-point weighted star can be embedded into an ultramet-
ric of size O(n) with constant distortion (an easy proof of this fact
is provided at the end of Section 5).

We also remark that for the case of embedding ultrametrics into
low-dimensional spaces, it has been shown (cf. [4]) that for any

ε > 0, any ultrametric can be embedded into `
O(ε−2 log n)
p , with

distortion 1 + ε.
Finally, we investigate the hardness of embedding ultrametrics

into the plane. We prove that the problem of finding the smallest-

1The algorithm is described for the case of the l2 norm. However,
since lp norms for all 1 ≤ p ≤ ∞ in <2 are equivalent up to a
factor of 2, the algorithm works for any lp norm as well.

distortion embedding is strongly NP-hard, if the distance is mea-
sured according to the l∞ norm. Interestingly, the problem of min-
imizing the distortion of embedding into ultrametrics can be solved
exactly in polynomial time [1].

Our techniques
We use the well-known fact that any ultrametric M = (X, D)
can be well approximated by hierarchically well-separated trees
(HST’s) (see Section 2 for definitions). The corresponding HST
T has the points of X as its leaves, and each vertex v of T has a
label l(v) ∈ <+. The distance of any pair of points p, q ∈ X is
exactly the label of their nearest common ancestor.

The hierarchical structure of HST’s naturally enables construct-
ing the embedding in a recursive manner. That is, the mapping is
constructed by embedding (recursively and independently) the chil-
dren of the root node, and then combining the embeddings. Imple-
menting this idea, however, requires overcoming a few obstacles,
which we discuss now. For simplicity, we focus on embeddings
into the plane.

Distortion lower bound. The first issue is how to obtain a good
lower bound for the distortion. It is not difficult to see that the
distortion depends on both the number of nodes, and the structure
of the ultrametric. For example, the full 2-HST of depth t, where
all internal nodes have degree 4, requires Ω(t) distortion; at the
same time, the full 4-HST of depth t, where all internal nodes have
degree 4, can be embedded with constant distortion.

Our lower bound is obtained as follows. Consider any node v and
its children u1 . . . uk . Let Pi be the set of leaves in the subtree of
the node ui, P = P1 ∪ . . . ∪ Pk . By the definition of ultrametrics,
the distances between any pair of points p ∈ Pi and q ∈ Pj for
i 6= j, are equal to the same value, namely l(v). Consider any non-
contracting embedding f : P → <2. Construct a ball of radius
l(v)/2 around each point f(p), p ∈ P , and denote this ball by
B(p, l(v)/2). It is easy to see that the union of the interiors of the
balls around points in Pi and the union of the interiors of the balls
around points in Pj must be disjoint if i 6= j.

Our lower bound on distortion proceeds by estimating the total
volume C(v) of ∪p∈P B(p, l(v)/2). Specifically, by packing argu-
ment, one can observe that the distortion of the optimal embedding
must be at least Ω(

p

C(v) − O(1)). Thus, it suffices to have a
good lower bound for the volume C(v). It would appear that such



Paper From Into Upper Bound Lower Bound
[19] general metrics ld2 Õ(n2/d) Ω(n1/b(d+1)/2c)
[12] trees ld2 Õ(n1/(d−1)) Ω(n1/d)
[13] weighted stars ld2 O(n1/d) Ω(n1/d)
[2] unweighted trees l22 O(n1/2) Ω(n1/2)

Figure 2: Previous work on worst-case embeddings into small dimensional spaces (we are assuming d = O(1)).

lower bounds could be obtained by summing C(ui)’s, since the
balls around different sets Pi are disjoint. Unfortunately, C(ui) is
the volume of the union of the balls of radius l(ui)/2, not l(v)/2,
so the above is not strictly true. However, ∪p∈PiB(p, l(v)/2) can
be expressed as a Minkowski sum of ∪p∈PiB(p, l(ui)/2) and a
ball of radius [l(v) − l(ui)]/2. Then the volume of that set can
be bounded from below by using Brunn-Minkowski inequality, by
a function of C(ui) and l(v) − l(ui). This enables us to obtain a
recursive formula for C(v) as a function of C(ui)’s.

Distortion accumulation. The recursive formula for the lower
bound suggests a recursive algorithm. Consider some vertex v of
the HST, and let u1, . . . , uk be its children. For each ui, 1 ≤ i ≤ k,
the leaves in the subtree of ui are mapped into a square R(ui)
whose volume is at most C(ui). Then the squares are re-arranged
to form a square R(v). The main difficulty with this approach is
that the optimal way to pack the squares is difficult to find. In
fact, the optimal embedding could, in principle, not pack the points
into squares. To overcome this problem, we allow some limited
stretching of the squares, to fit them into R(v). However, stretch-
ing causes distortion, and thus we need to make sure that stretching
done over different levels does not accumulate. In order to avoid
such accumulation of distortion, we alternate between the horizon-
tal and vertical stretchings of the squares. Specifically, we assign,
for each vertex v of the HST, a bit g(v) that determines whether the
squares into which the sub-trees of the children of v are embedded
will be stretched in the horizontal or the vertical direction before
they are packed into the square R(v). We calculate the values of
the bits g(v) in a top-down manner, starting with the leaves of the
HST, to ensure that the final stretchings are balanced.

It appears that the need to compute a proper choice of stretching
directions (which can also be viewed as rotations) at each level is
not just an artifact of our algorithm, but it might be necessary to
achieve low distortion. In particular, the only constant distortion
embedding of a full 2-HST into the plane that we are aware of uses
alternating rotations.

Higher dimensions. We show how to generalize the algorithm
for embedding ultrametrics into the plane to higher dimensions. We
show an algorithm that produces a cO(d)-distortion embedding of
the input ultrametric into <d under the l2 norm, where c denotes
the optimal distortion achievable when embedding the input ultra-
metric into <d.

Hardness. We show NP-hardness of the embedding problem for
the case of the plane under l∞ norm. We use a reduction from the
square packing problem. Since our algorithm also uses (a variant
of) square packing, the packing problem appears to be intimately
related to embeddings of ultrametrics.

2. PRELIMINARIES AND DEFINITIONS
A metric M = (X, D) is an ultrametric, if it can be represented

by a labeled tree T whose set of leaves is X , in the following man-
ner. Each non-leaf vertex v of T has a label l(v) > 0. If u is a child
of v in tree T , then l(u) ≤ l(v). For any x, y ∈ X , the distance

between x and y is defined to be the label of the nearest common
ancestor of x and y, and this distance should be equal to D(x, y).

We now proceed to define hierarchically well-separated trees
(HST’s). For any α ≥ 1, an α-HST is an ultrametric where for each
parent-child pair of vertices (u, v), l(u) = αl(v). It is easy to see
that for any α ≥ 1, any ultrametric can be α-approximated by an
α-HST (cf. [3]). Moreover, such an HST can be found in time lin-
ear in the input size. Therefore, if the input ultrametric M embeds
into <d with distortion c, then the metric M ′ defined by the corre-
sponding 2-HST embeds into <d with distortion c′ = 2c. Any non-
contracting embedding of M ′ into <d with distortion c′′ represents
a non-contracting embedding of M with distortion O(c′′). There-
fore, from now on we will concentrate on embeddings of HST’s
into <d.

Given a 2-HST T , we will use the following additional notation.
Let r denote the root of the tree, and let h denote the tree height.
We assume that r belongs to the first level of T , and all the leaves
belong to level h. By scaling the underlying metric M , we can
assume w.l.o.g., that for each vertex v at level h − 1, l(v) = 2.
For any non-leaf vertex v, we denote by Xv the set of leaves of the
subtree of T rooted at v, and we denote the number of leaves in the
subtree nv .

We will use the Brunn-Minkowski inequality, defined as follows.
Given any two sets A, B ⊆ Rd, let A ⊕ B denote the Minkowski
sum of A and B, i.e., A ⊕ B = {a + b | a ∈ A, b ∈ B}.

THEOREM 1 (BRUNN-MINKOWSKI INEQUALITY). For any pair
of sets A,B ⊆ Rd,

Vol(A ⊕ B)1/d ≥ Vol(A)1/d + Vol(B)1/d.

3. A LOWER BOUND ON THE DISTOR-
TION OF OPTIMAL EMBEDDING

In this section we show a lower bound on the distortion of op-
timal embedding of a metric M ′ which is defined by a 2-HST de-
noted by T .

For any r > 0, let B(r) denote the ball of radius r in `d
2 centered

at the origin. Let Vd(r) denote the volume of a d-dimensional ball

of radius r, Vd(r) = πd/2rd

Γ(1+d/2)
. For each vertex v of T , we define

a value C(v), which intuitively is a lower-bound on the minimum
volume embedding of Xv (the precise statement appears below).
The values C(v) are defined recursively, starting from the leaves.
For each leaf v, we set C(v) = Vd(1/2).

Consider now vertex v at level j ∈ [h − 1], and let u1, . . . , uk

be the children of v in T . We define:

C(v) =

k
X

i=1

“

(C(ui))
1/d + (Vd(l(v)/4))1/d

”d

Given any embedding ϕ : X → `d
2, for any subset X ′ ⊆ X , let

ϕ(X ′) denote the image of points in X ′ under ϕ.



LEMMA 1. Let v be a non-leaf vertex of T , and let ϕ be any
non-contracting embedding of Xv into `d

2 . Then the volume of

ϕ(Xv) ⊕ B
“

l(v)
2

”

is at least C(v).

PROOF. Let u1, . . . , uk be the children of v. The proof is by
induction. Assume first that v belongs to level h − 1 of T , and
consider S = ϕ(Xv) ⊕ B(l(v)/2). Recall that l(v) = 2. Since
the embedding is non-contracting, for any 1 ≤ i < j ≤ k, vertices
ui, uj are embedded at a distance at least 2 from each other. There-
fore, set S consists of k balls of disjoint interiors, of radius 1 each,
and thus the volume of S is exactly kVd(1) = C(v).

Assume now that v belongs to some level j ∈ [h − 2]. Let
S = ϕ(Xv) ⊕ B(l(v)/2). Equivalently, S is the union of Si =
ϕ(Xui ) ⊕ B(l(v)/2) for i ∈ [k]. Since the embedding is non-
contracting, all the sets Si have disjoint interiors. For each i ∈ [k],
let us denote S′

i = ϕ(Xui) ⊕ B(l(ui)/2). Recall that l(v) =
2l(ui). Therefore, for each i ∈ [k], Si = S′

i ⊕ B(l(v)/4). Using
the induction hypothesis, the volume of S′

i is at least C(ui). From
the Brunn-Minkowski inequality, it follows that:

(Vol(Si))
1/d ≥

`

Vol(S′
i)
´1/d

+ (Vd(l(v)/4))1/d

≥ (C(ui))
1/d + (Vd(l(v)/4))1/d

Therefore, in total,

Vol(S) =

k
X

i=1

Vol(Si) ≥
k
X

i=1

“

(C(ui))
1/d + (Vd(l(v)/4))1/d

”d

= C(v).

Suppose we are given some set of points S ⊆ <d, that has vol-

ume V . We define ρd(V ) =
“

V ·Γ(1+d/2)

πd/2

”1/d

, i.e., ρd(V ) is the

radius of the d-dimensional ball in <d that has volume V . Observe
that S has two points at a distance at least ρd(V ) from each other
(otherwise, S is contained in a ball of radius smaller than ρd(V ),
which is impossible).

COROLLARY 1. Let v be some non-leaf vertex of T , and let ϕ
be any non-contracting embedding of M ′ into `d

2 , with distortion
at most c′. Then c′ ≥ ρd(C(v))/l(v) − 1.

PROOF. Consider S = ϕ(Xv) ⊕B (l(v)/2). By Lemma 1, the
volume of S is at least C(v), and thus there are two points x, y ∈ S
within a distance at least ρ = ρd(C(v)) from each other. By the
definition of S, it follows that there are two points a, b ∈ Xv , which
are embedded at a distance of at least ρ− l(v) from each other. As
the distance between a, b in T is at most l(v), the bound on the
distortion follows.

4. APPROXIMATION ALGORITHM FOR
EMBEDDING ULTRAMETRICS INTO
THE PLANE

4.1 Preliminaries and Intuition
Let M = (X, D) be the input ultrametric that embeds into the

plane with distortion c. Let M ′ = (X, D′) be the metric defined
by the 2-HST T which 2-approximates M . Then M ′ embeds into
the plane with distortion c′ ≤ 2c, and any non-contracting em-
bedding of M ′ into the plane with distortion O(c′3) is also a non-
contracting embedding of M with distortion at most O(c3). There-
fore, from now on we concentrate on embedding M ′ into the plane.

Consider some non-leaf vertex u. We define au =
p

C(u). If

u 6= r, let v be its father. We define bu = au +
√

πl(v)
4

.
Our algorithm works in bottom-up fashion. Let v be some vertex.

The goal of the algorithm is to embed all the vertices of Xv into a
square Q of side av , incurring only small distortion. Let u1, . . . , uk

be the children of v, and assume that for all j : 1 ≤ j ≤ k,
we have already embedded X(uj) inside a square Qj of side auj .
Recall that for any pair of vertices x ∈ Xuj , y ∈ Xuj′

, where
1 ≤ j 6= j′ ≤ k, the distance between x and y in T is l(v).
Our first step is to ensure non-contraction (or more precisely small

contraction), by adding empty strips of width
buj

−auj

2
=

√
πl(v)
8

around the squares. Thus, we obtain a collection Q′
1, . . . , Q

′
k of

squares, of sides bu1 , . . . , buk , respectively. Our goal now is to
pack these squares into one large square Q of side av . Observe
that from volume view point, Vol(Q) = Vol(Q′

1)+ . . .+Vol(Q′
k),

since a2
v =

Pk
j=1 b2

uj
, by the definition of Cv. However, it is not

always possible to obtain such tight packing of squares. Instead,
we convert each square Q′

j to rectangle Rj whose sides are buj suj ,
buj /suj for some suj = O(c′). Observe that the volume of Rj is
the same as that of Q′

j . This will enable us to pack all the rectangles
R1, . . . , Rk into Q. Recall that inside each square Q′

j , vertices of
Xuj are embedded. In order to convert square Q′

j into rectangle
Rj , we contract all the distances along one axis, and expand all the
distances along the other axis, by the same factor suj .

Consider now two vertices u, v, and let z be their least common
ancestor. The distance between u and v might thus be contracted
or expanded when we calculate the embedding of Xz . However,
for each vertex z′ on the path from z to r, the distance between u
and v might be contracted or expanded again, when calculating the
embedding of Xz′ . In order to avoid accumulation of distortion,
we would like to alternate the contractions and expansions of this
distance in an appropriate way. To this end, we calculate, for each
vertex v, a value g(v) ∈ {−1, 1}. Let u1, . . . , uk be the children of
v, and let Q′

1, . . . , Q
′
k be their corresponding squares. If g(v) = 1,

then when embedding squares Q′
1, . . . , Q

′
k into square Q of side

av , we expand them along axis x and contract along axis y. If
g(v) = −1, we do the opposite. The values of g(v) have to be
computed in a top-bottom fashion. They are calculated in such a
way that the total distortion of distance between any pair of points
in X stays below poly(c′).

For any non-root vertex u in T , with parent a vertex v, we define
su = av/bu. Also, for the root r of T , let sr = 1.

LEMMA 2. For each vertex u, 1 ≤ su ≤ 32c′.

PROOF. If u is the root, then su = 1. Otherwise, let u, v ∈ T ,
such that v is the father of u. We have already observed that a2

v is
the sum of b2

uj
, for all children uj of v. Thus, s(u) ≥ 1 holds.

Recall now that by the definition of bu, its value is at least l(v)
4

.
On the other hand, by Corollary 1, c′ ≥ av

l(v)
√

π
− 1, and thus

av ≤ (c′ +1)
√

πl(v) ≤ 8c′l(v). Therefore, su = av
bu

≤ 32c′.

Let v be some non-leaf vertex, and let u1, . . . , uk be its children.
Let Q′

1, . . . , Q
′
k be the squares of side bu1 , . . . , buk , respectively,

corresponding to the children. In order to pack these squares into
a square of side av , we transform each square Q′

j into a rectangle

with sides buj sj ,
buj

sj
. The goal of the next lemma is to calculate

the values g(v) ∈ {−1, 1} for each v ∈ V , that will determine,
along which axis we contract, and along which expand when em-
bedding the subtree of v.

Suppose we have a function g : V (T ) → {−1, 1}. Consider
some vertex v ∈ V (T ), and let v1, v2, . . . , vk be the vertices on



the path from v to r, where v1 = r, vk = v. We define h(v) =
Qk−1

j=1 s
g(vj)
vj+1 .

LEMMA 3. We can calculate, in linear time, function g : V (T ) →
{−1, 1}, such that for each v ∈ V (T ), 1

32c′
≤ h(v) ≤ 32c′ .

PROOF. Observe first that in order to be able to calculate h(v)
for any v ∈ V , it is enough to know the values of g(v′) of all the
vertices v′ on the path from r to v, not including v.

We traverse the tree in the top-bottom fashion. For root r, we set
g(r) = 1. Since for all the values sv , 1 ≤ sv ≤ 32c′ holds, we
have that for each level-2 vertex v, 1

32c′
≤ h(v) ≤ 32c′ holds, as

required.
Consider now some vertex v ∈ V at level k, where k ≥ 2. Let

v1, v2, . . . , vk be the vertices on the path from r to v, where v1 =
r, and vk = v, and assume we have calculated g(v1), . . . , g(vk−1),
such that for each j : 2 ≤ j ≤ k, 1

32c′
≤ h(vj) ≤ 32c′ holds. We

set g(v) = 1 if h(vk) ≤ 1, and we set g(v) = −1 otherwise. Let
u be a child of v. Since h(u) = hv · s

g(v)
u , and su ≤ 32c′ , the

inequality 1
32c′

≤ h(u) ≤ 32c′ holds.
It is easy to see that the running time of the above algorithm is

linear, if the values h(v) of the vertices calculated by the algorithm
are stored in a table. The algorithm traverses each vertex only once,
and for each vertex v the calculation of h(v) and g(v) takes only
constant time.

4.2 Algorithm Description
The algorithm consists of two phases. The first phase is pre-

processing, and the second phase is computing the embedding it-
self.

Phase 1: Preprocessing. In this phase we translate the input ultra-
metric M into a 2-HST T , and calculate the values av , bv , sv , g(v)
for each vertex v ∈ T . Each one of these operations takes time
linear in the input size.

Phase 2: Computing the embedding. The algorithm works in
a bottom-up fashion. For any vertex v in tree T , we produce an
embedding of vertices Xv inside a square of side av . We start from
level-h vertices (the leaves). Let v be such vertex. Then av =
p

C(v) =
p

π/4. We embed this point in the center of a square
with a side of length

p

π/4.
Consider some level-i vertex v, for 1 ≤ i < h, and let u1, . . . , uk

be its children. We assume that for each j : 1 ≤ j ≤ k, we have
calculated the embeddings of uj into a square Qj of side auj . We
convert this square into a rectangle Rj , as follows. First, we add an
empty strip of width

√
πl(v)
8

along the border of Qj , so that now we
have a new square Q′

j of side buj . If g(v) = 1, then we expand the
square along axis x and contract it along axis y by the factor of suj .
Otherwise, we expand square Q′

j along axis y and contract it along
axis x by the factor of suj . Notice that by the definition of suj , the
length of the longer side of Rj is precisely av . As the volume of
Rj equals to the volume of Q′

j , and since a2
v =

Pk
j=1 b2

uj
, we can

pack all the rectangles next to each other inside a square Q of side
av , with their longer side parallel to the x-axis if g(v) = 1, and to
y-axis otherwise.

4.3 Analysis
The goal of this section is to bound the distortion produced by

the algorithm. We first bound the maximum contraction, and then
the maximum expansion of distances.

LEMMA 4. For any u, u′ ∈ X , the distance between the im-
ages of u and u′, is at least Ω(1/c′)D(u, u′).

PROOF. Let v be the least common ancestor of u, u′.
Let z, z′ be the children of v, to whose subtrees vertices u, u′

belong, respectively. Let Q, Q′ be the squares into which Xz , and
Xz′ are embedded, respectively, and let R, R′ be the correspond-
ing rectangles. Recall that we have added a strip of width at least√

πl(v)
4

to squares Q,Q′, and then stretched the new squares by a
factors of s(z), s(z′), respectively. Without loss of generality, we
can assume s(z) ≥ s(z′). Therefore, immediately after comput-
ing the embedding for Xv , there is a strip S of width at least l(v)

4s(z)

between the rectangles R, R′. The width of strip S in the final
embedding is a lower bound on the distance between the images
of u and u′. Let v1, . . . , vk be the vertices on the path from r to
v, where v1 = r, vk = v. Let uk+1 = z. If g(v) = 1, then
strip S is horizontal, and thus for each j : 1 ≤ j ≤ k − 1, if
g(vj) = 1 then its width decreases by the factor of s(vj+1), and
if g(vj) = −1 then its width increases by the same factor. Thus,
the final width of S is at least: l(v)

4s(z)g(v)

Qk−1
j=1 s(vj+1)

−g(vj) =
l(v)
4

Qk
j=1 s(vj+1)

−g(vj) ≥ l(v)
4h(z)

≥ l(v)
128c′

.
If g(v) = −1, then strip S is vertical, and thus for each j : 1 ≤

j ≤ k−1, whenever g(vj) = 1, the width of the strip grows by the
factor of s(vj+1), and whenever g(vj) = −1, this width decreases
by the same factor. Thus, in this case, the final width of S is at least:
l(v)
4

s(z)g(v)Qk−1
j=1 s(vj+1)

g(vj) = l(v)
4

Qk
j=1 s(vj+1)

g(vj) ≥ l(v)
128c′

.
As D(u, u′) = l(v), this concludes the proof of the lemma.

LEMMA 5. For any u, u′ ∈ X , the distance between the im-
ages of u and u′, is at most O(c′2)D(u, u′).

PROOF. Let v be the least common ancestor of u, u′. Then

D(u, u′) = l(v). Following Corollary 1, c′ ≥
q

C(v)
π

/l(v) − 1,

and thus av ≤ (c′ + 1)
√

πl(v) ≤ 4c′l(v).
When calculating the embedding of Xv , all the vertices in Xv

were embedded inside a square A whose side is av ≤ 4c′l(v) =
O(c′D(u, u′)).

After computing the final embedding, A is mapped to a rectangle
A′, which is obtained from A by expanding by a factor of γ along
one axis, and by expanding by a factor of 1/γ along the other axis.
If v1, . . . , vk are all the vertices along the path from the root r = v1

to v = vk , then γ =
Qk−1

j=1 s(vj+1)
g(vj) = h(v). Thus, by Lemma

3, γ is at least Ω(1/c′), and at most O(c′). It follows that the
diameter of A′ is at most O(c′2D(u, u′)). Since the images of u
and u′ in the final embedding are contained inside A′, the assertion
follows.

The following result is now immediate:

THEOREM 2. Given an ultrametric M that c-embeds into the
Euclidean plane, we can compute in linear time an embedding of
M into the Euclidean plane with distortion O(c3).

5. UPPER BOUND ON ABSOLUTE
DISTORTION

In this section we show that for any d ≥ 2, any n-point ultramet-
ric can be embedded into `d

2 with distortion O(d1/2n1/d).
Given an ultrametric M , we first compute an α-HST T that α-

approximates M , for some constant α > 16. Let M ′ be the metric
associated with T . Observe that any embedding of M ′ into `d

2 with
distortion c, is also an embedding of M into `d

2 , with distortion
O(c). Thus, it suffices to show that M ′ can be embedded into `d

2

with distortion O(d1/2n1/d).
We will compute an embedding of M ′ into `d

2 inductively, start-
ing from the leaves of T . For every subtree of T rooted at a vertex



u, we compute an embedding fu of the submetric of M ′ induced
by Xu, into `d

2 . We maintain the following inductive properties of
fu:

• The contraction of fu is at most 16.

• f(Xu) is contained inside a hypercube of side length l(u)n
1/d
u .

We assume w.l.o.g. that for each leave v of T , l(v) = 1. Thus,
we can embed each leave in a center of a hypercube of side 1. The
following lemma shows how to compute the recursive embedding
of inner vertices of T .

LEMMA 6. Let v be an internal vertex of T , whose children
are u1, . . . , uk. Assume that for each i ∈ [k], we are given an
embedding fui : Xui → Rd, with contraction at most 16, such
that fui (Xui) is contained inside a d-dimensional hypercube Sui ,

with side length l(ui)n
1/d
ui . Then we can compute in polynomial

time an embedding fv : Xv → Rd, with contraction at most 16,
such that fv(Xv) is contained inside a d-dimensional hypercube

Sv , with side length l(v)n
1/d
v .

PROOF. For each i ∈ [k], let ri = l(ui)n
1/d
ui be the length of

the side of the hypercube Svi . Let also S′
ui

be a hypercube of side
length r′i = ri + l(v)/16, having the same center as Sui . We
assume w.l.o.g. that n1 ≥ n2 ≥ · · · ≥ nk and thus r′1 ≥ · · · ≥ r′k.
We note that for each i : 1 ≤ i ≤ k, r′

i ≤ l(v)n
1/d
v /4, since

r′i = ri + l(v)/16 = l(ui)n
1/d
ui + l(v)/16 ≤ l(v)n

1/d
v /4.

We first define a partition R = {Rj}λ
j=1, of the set [k], which

we will use to partition the set of hypercubes {Sui}k
i=1, as follows.

We will define λ+1 integers t0, t1, . . . , tλ, where t0 = 0, tλ = k,
and t0 < t1 < · · · < tλ, and then set Rj to contain all the indices
i : tj−1 + 1 ≤ i ≤ tj . This defines a partition of the hypercubes
into λ sets S1, . . . ,Sλ, where Sj contains the hypercubes Sui with
i ∈ Rj . For each j : 1 ≤ j ≤ λ, let ρj = r′tj−1+1 denote the side
of the largest hypercube in Sj , and let ρ′

j = rtj denote the side of
the smallest hypercube in Sj .

We now proceed to define the numbers tj , for j : 0 ≤ j ≤ λ.
Set t0 = 0, and for each j ≥ 1, if tj−1 < k, we inductively define
tj as

tj = min{k, tj−1 + bl(v)n1/d
v /r′tj−1+1cd−1}.

If tj = k then we set λ = j.
Note that for any j ∈ [λ − 1],

|Rj | =

$

l(v)n
1/d
v

ρj

%d−1

We now define the embedding fv by placing the hypercubes S′
ui

inside a hypercube of side length l(v)n
1/d
v , such that their interiors

do not overlap, using the partition R. For each j ∈ [λ], we place
the hypercubes in Sj inside a parallelepiped Wj having d−1 sides
of length l(v)n

1/d
v , and one side of length ρj , as follows. It is easy

to see that we can pack |Rj | d-dimensional hypercubes of side ρj

inside Wj . Since each hypercube in Sj has side at most ρj , we can
replace each hypercube embedded into Wj by a hypercube from
Sj , such that the centers of both hypercubes coincide.

Finally, we place the parallelepipeds Wj inside a parallelepiped
W having d − 1 sides of length l(v)n

1/d
v , and one side of length

Pλ
j=1 ρj . Observe first that the contraction of this embedding is

at most 16: for any pair of vertices x, y ∈ X(v), if x, y both be-
long to a subtree of the same child ui of v, then by induction hy-
pothesis the distance between them is contracted by at most 16. If

x ∈ X(ui), y ∈ X(ui′ ) and i 6= i′, then the original distance is
D(x, y) = l(v). Since we add emty space of width l(v)/32 around
the hypercubes S(uq) when they are transformed into hypercubes
S′(uq), it is clear that the distance between the embeddings of x
and y is at least l(v)/16.

It now only remains to show that
Pλ

j=1 ρj ≤ l(v)n
1/d
v . We par-

tition the parallelepipeds Wj into two types. The first type contains
all the parallelepipeds Wj , where ρj/ρ′

j ≥ 2. Additionally, the last
parallelepiped Wk is also of the first type, regardless of the ratio
ρk/ρ′

k. Let T1 ⊆ [k] contain all the indices j where Wj is of the
first type. All the other parallelepipeds belong to the second type,
and let T2 = [k] \ T1 contain the indices of the parallelepipeds of
the second type. Notice that for j ∈ T1, the values ρj form a ge-
ometric series with ratio 1/2. Since the sides r′

i of the hypercubes
Sui are bounded by l(v)n

1/d
v /4, it is easy to see that:

X

j∈T1

ρj ≤ l(v)n
1/d
v

4

„

1 +
1

2
+

1

4
+ · · ·

«

≤ l(v)n
1/d
v

2

It now remains to bound
P

j∈T2
ρj . Fix some j ∈ T2, and con-

sider some hypercube S′
ui

where i ∈ Rj . As Wj is of the second
type, we know that r′

i ≥ ρj/2. On the other hand,

r′i = ri +
l(v)

16
= l(ui)n

1/d
ui

+
l(v)

16

≤ l(v)

16

“

1 + n1/d
ui

”

≤ l(v)

4
n1/d

ui

Therefore, nui ≥
“

2ρj

l(v)

”d

. Recall that for j : 1 ≤ j < λ,

|Rj | =

—

l(v)n
1/d
v

ρj

�d−1

≥
„

l(v)n
1/d
v

2ρj

«d−1

. Therefore, we have

that

X

i∈Rj

nui ≥
 

l(v)n
1/d
v

2ρj

!d−1

·
„

2ρj

l(v)

«d

≥ 2ρj

l(v)
n1−1/d

v

Thus, ρj ≤
l(v)

P

i∈Rj
nui

2n
1−1/d
v

, and

X

j∈T2

ρj ≤ l(v)nv

2n
1−1/d
v

≤ l(v)n
1/d
v

2

We have that in total,
P

j ρj =
P

j∈T1
ρj +

P

j∈T2
ρj ≤

l(v)n
1/d
v .

We are now ready to prove the main theorem of this section.

THEOREM 3. For any d ≥ 2, any n-point ultrametric can be
embedded into `d

2 with distortion O(d1/2n1/d). Moreover, the em-
bedding can be computed in polynomial time.

PROOF. Starting from the leaves of T , we inductively compute
for each v ∈ V (T ) the embedding fv as described above. By
recursively applying Lemma 6 we can compute in polynomial time
the embedding fv , that also satisfies the inductive properties. Let f
be the resulting embedding fr .

Consider now two points x, y ∈ X , and let v be the nearest com-
mon ancestor of x and y. Since fv(Xv) is contained inside a hy-
percube of side length l(v)n

1/d
v , it follows that ‖f(x) − f(y)‖2 ≤

“

dn
2/d
v l2(v)

”1/2

= d1/2n1/dD(x, y). Since the contraction of fv

is at most 16, it follows that the distortion of f is O(d1/2n1/d).



Observe that for d = 2, the algorithm provides an O(
√

n)-
distortion embedding. Combining this with the O(c3)-distortion
algorithm from Section 4, we obtain the following result:

THEOREM 4. There is an efficient O(n1/3)-approximation al-
gorithm for minimum distortion embedding of ultrametrics into the
plane.

PROOF. Let c be the optimal distortion achievable by any em-
bedding of the input ultrametric into the plane. If c > n1/6 then the
above algorithm, which produces an O(

√
n)-distortion embedding

is an O(n1/3)-approximation. Otherwise, if c ≤ n1/6 , then the al-
gorithm from Section 4 gives O(c2) = O(n1/3)-approximation.

We remark that Theorem 3 generalizes a result of Gupta [13],
who shows that every n-point weighted star metric can be embed-
ded into Rd, with distortion O(n1/d). This is a corollary of the
following simple observation.

CLAIM 1. Every n-point weighted star can be embedded into
an ultrametric of size O(n) with distortion at most 2.

PROOF. Consider a star S with root r, and leaves x1, . . . , xn,
where for each i ∈ [n], DS(r, xi) = wi. Assume w.l.o.g. that
w1 ≤ w2 ≤ . . . ≤ wn. We construct a tree T with root r′ as
follows. T contains a path zn, zn−1, . . . , z1, where zn = r′, and
for each i ∈ [n−1], DT (r′, zi) = wn−wi. We now embed S into
T as follows. For each i ∈ [n], we add xi to T , and we connect
xi to zi with an edge of length wi. Observe that the shortest-path
metric on the leaves of T is an ultrametric, since all the leaves are
on the same level. Moreover, for any i < j ∈ [n], DT (xi, xj) =
2wj , while DS(xi, xj) = wi +wj , and so the resulting embedding
is non-contracting, and has expansion at most 2.

6. NP-HARDNESS OF EMBEDDING ULTRA-
METRICS INTO THE PLANE

In this section we consider embeddings into the plane under the
`∞ norm. We say that a square S ⊂ R2 is orthogonal if the sides
of S are parallel to the axes.

We will show that the problem of computing a minimum dis-
tortion embedding of an ultrametric into the plane under the `∞
norm is NP-hard. We perform a reduction from the following NP-
complete problem (see [16]): Given a packing square S and a set of
packed squares L = {s1, . . . , sn}, is there an orthogonal packing
of L into S? We call this problem SQUAREPACKING.

For a square s, let a(s) denote the length of its side. Assume
w.l.o.g. for each i ∈ [n], a(si) ∈ N, a(S) ∈ N, and that a(s1) ≤
a(s2) ≤ . . . ≤ a(sn). The SQUAREPACKING problem is strongly
NP-complete. Thus we can assume w.l.o.g. that there exists N =
poly(n), such that 1 ≤ a(s1) ≤ . . . ≤ a(sn) ≤ a(S) < N .

6.1 The Construction
Consider an instance of the SQUAREPACKING problem, where

S is the packing square, and L = {s1, . . . sn} is the set of packed
squares. We will define an ultrametric M = (X, D) and an integer
k, such that M embeds into the plane with distortion at most k − 1
iff there exists an orthogonal packing of L into S. It is convenient
to define M by constructing its associated labeled tree T , where
each v ∈ V (T ) has a label l(v) ∈ Q.

Let k = N10. For each square si ∈ L, we introduce a set of k2

leaves yi,1, . . . yi,k2 in T . We connect all of these leaves to a vertex
xi, and we set l(xi) = a(si) − a(S)/(k − 1). Note that l(xi) is
very close to a(si). Next, we introduce a root vertex r ∈ V (T ),
and for each i ∈ [n], we connect xi to r. We set l(r) = a(S).

r

x1

. . .

y1,1 y1,2 y1,k2

x2

. . .

y2,1 y2,2 y2,k2

. . . xn

. . .

yn,1 yn,2 yn,k2

Figure 3: The constructed tree T . The labels of the vertices are:
l(r) = a(S) and l(xi) = a(si) − a(S)/(k − 1).

S

s1

s2

s3

s4

→

f(Xx1
)

f(Xx2
)

f(Xx3
)

f(Xx4
)

Figure 4: The embedding constructed for the YES instance.

For a vertex v ∈ V (T ), we denote by Xv the set of leaves of T
having v as an ancestor. Figure 3 depicts the described construc-
tion.

6.2 YES-Instance
Assume that there exists an orthogonal packing of L into S. We

will show that there exists an embedding f : X → R2 with distor-
tion k − 1.

As a first step, for each vertex xi : 1 ≤ i ≤ n, we embed all the
vertices of Xxi in a square Qi of side (k − 1)l(xi). This is done
by simply placing a k × k orthogonal grid with step l(xi) inside
Qi and embedding the vertices of Xxi on the grid points. Next, we
transform the squares Qi into squares Q′

i by adding empty strips
of width a(S)/2 around Qi. Notice that the side of Q′

i is exactly
(k−1)l(xi)+a(S) = (k−1)a(si). Finally, we embed the squares
Q′

i into a square S of side (k− 1)a(S) according to the packing of
the input squares in S. Figure 4 depicts the resulting embedding f .

We now show that the distortion of the embedding f is at most
k − 1.

Let u, v ∈ X . We have to consider the following cases for u, v:

Case 1: u, v ∈ Xxi for some i ∈ [n]. Since the vertices of Xxi

are embedded on a grid of step l(xi), it follows that ‖f(u)−
f(v)‖∞ ≥ l(xi) = D(u, v). Thus, the contraction is at
most 1. Moreover, since all the vertices of Xxi are embedded
inside a square Qi of side l(xi)(k − 1), the expansion is at
most k − 1.

Case 2: u ∈ Xxi and v ∈ Xxj , for some i 6= j. Since we add
empty strips of width a(S)/2 around the squares Qi, Qj , we
have that ‖f(u) − f(v)‖∞ ≥ a(S) = l(r) = D(u, v).
Thus, the contraction is 1. On the other hand, all the ver-
tices are embedded inside a square S of side l(r)(k − 1) =
a(S)(k − 1), and therefore the expansion is at most k − 1.

Thus, we have shown that the distortion is at most k − 1.



6.3 NO-Instance
Assume that there is no orthogonal packing of L inside S. We

show that the minimum distortion required to embed M into the
plane is greater than k − 1. Assume that there exists an embedding
f : X → R2, with distortion at most k−1. W.l.o.g. we can assume
that f is non-contracting.

The following lemma will be useful in the analysis.

LEMMA 7. Let M = (X, D) be a uniform metric on k2 points,
for some integer k > 0. Then, the minimum distortion for embed-
ding M into the plane is k − 1. Moreover, an embedding f has
distortion k − 1 iff f(X) is an orthogonal grid.

PROOF. By scaling M , we can assume w.l.o.g. that for any
u, v ∈ X , D(u, v) = 1. Consider an non-contracting embed-
ding f : X → R2. For any v ∈ X , let Av be square of side length
1, centered at f(v). Clearly, for any u, v ∈ X , with u 6= v, the
interiors of squares Au and Av are disjoint. Let A =

S

v∈X Av. It
follows that Vol(A) = |X|. Thus, there exist p1, p2 ∈ A, such that
‖p1 − p2‖∞ ≥ |X|1/2 = k. Let v1, v2 ∈ X be the centers of the
squares Av1 , Av2 to which p1 and p2 belong, respectively. Then
‖f(v1)−p1‖∞ ≤ 1/2, and ‖f(v2)−p2‖∞ ≤ 1/2. It follows that
‖f(v1) − f(v2)‖∞ ≥ k − 1. Thus the distortion is at least k − 1.

Clearly, if f maps X onto a k× k orthogonal grid, the distortion
of f is k − 1. It remains to show that this is the only possible
optimal embedding.

Assume that an embedding f has distortion k − 1, and let f
be non-contracting. Observe that since the diameter of f(X) is
at most k − 1, f(X) must be contained inside a square K of
side length k − 1. Let {Av}v∈X be defined as above. It follows
that A is contained inside a square K ′ of side length k. Since
Vol(A) = Vol(K ′), it easily follows that f(X) is an orthogonal
k × k grid.

COROLLARY 2. For each i ∈ [n], f(Xxi ) is an orthogonal
k × k grid of side length (k − 1)l(xi) = (k − 1)a(si) − a(S).

For each i ∈ [n], let Q′
i be the square of side length (k−1)a(si),

that has the same center of mass as f(Xxi ).

CLAIM 2. For each i, j ∈ [n], i 6= j, the interiors of the
squares Q′

i, Q
′
j are disjoint.

PROOF. Assume that the assertion is not true. That is, there
exist i, j ∈ [n], with i 6= j, and p ∈ R2, such that p belongs to
the interiors of both squares Q′

i, Q
′
j . By the definition of Q′

i and
Q′

j , there are points v1 ∈ Xxi , v2 ∈ Xxj which are embedded
within distance smaller than a(S)/2 from p. But then ‖f(v1) −
f(v2)‖∞ < a(S), contradicting the fact that the embedding is non-
contracting.

CLAIM 3.
Sn

i=1 Q′
i is contained inside a square of side length

ka(S).

PROOF. Since f has expansion at most k−1, f(X) is contained
inside an orthogonal square S of side length (k − 1)l(r) = (k −
1)a(S). Observe that for each i ∈ [n], for each point p ∈ Qi, there
exists v ∈ Xxi , such that ‖p − f(v)‖∞ ≤ a(S)/2. Let S ′ be
the square of side length ka(S) that has the same center as S . It
follows that S ′ contains

Sn
i=1 Q′

i.

LEMMA 8. If M can be embedded into the plane with distor-
tion at most k − 1, then there exists an orthogonal packing of L
inside S.

PROOF. If there exists an embedding f : X → R2 with distor-
tion k − 1, by Claim 3 we obtain that

Sn
i=1 Qi is contained inside

a square of side length ka(S). Moreover, by Claim 2, the embed-
dings of squares Q′

i defines a feasible packing of these squares into
the square S ′. Note that for each i : 1 ≤ i ≤ n, Qi has side length
(k−1)a(si). That is, the squares Q1, . . . , Qn are just scaled copies
of the squares s1, . . . , sn. Thus, we obtain that there exists an or-
thogonal packing of L inside a square S′ of side length a(S) k

k−1
.

Recall that k = N10 > a(S)10. Thus, S′ has side length less than
a(S) + 1/2.

Since a(S) and a(si) for each i ∈ [n] are integers, it follows
that there is also an orthogonal packing of L into a square of side
length a(S).

The following theorem is now immediate.

THEOREM 5. The problem of minimum-distortion embedding
of ultrametrics into the plane under the `∞ norm is NP-hard.

7. APPROXIMATION ALGORITHM
FOR EMBEDDING ULTRAMETRICS
INTO HIGHER DIMENSIONS

In this section we extend the techniques used in Section 4, to
obtain an approximation algorithm for embedding ultrametrics into
`d
2 .

Given an ultrametric M = (X, D) that embeds into `d
2 with

distortion c, we first embed M into a 2-HST M ′ = (X, D′). Let
T be the labeled tree associated with M ′, as in Section 4. Then
M ′ embeds into `d

2 with distortion c′ = O(c). We now focus on
finding an embedding of M ′ into the `d

2 with distortion at most
c′O(d). The same embedding is an cO(d)-distortion embedding of
M into `d

2 . We compute an embedding of M ′ into `d
2 by recursively

embedding the subtrees of vertices in a bottom-up fashion.
For any vertex u in the tree, let au = (C(u))1/d. If u is a

non-root vertex, let v be the father of u in T . We set bu = au +
(Vd(l(v)/4))1/d, and su = av/bu. If u is the root of the tree, we
set su = 1.

Given a vertex v in the tree, we embed the vertices in Xv into a
hypercube of side av, recursively. Let u1, . . . , uk be the children
of v, and assume that for each i ∈ [k], we are given an embedding
of Xui into a d-dimensional hypercube Qui of side length aui .
We define an additional hypercube Q′

ui
of side length bui that has

the same center as Qui (i.e., Q′
ui

is obtained from Qui by adding
a “shell” of width (Vd(l(v)/4))1/d/2 around Qui ). Let Qv be a
d-dimensional hypercube of side length av.

Note that the volume of Qv equals the sum of volumes of Q′
ui

,
for 1 ≤ i ≤ k. This is since the volume of Qv is ad

v = C(v), while
the sum of volumes of Q′

ui
, 1 ≤ i ≤ k is

k
X

i=1

bd
ui

=

k
X

i=1

“

(C(ui))
1/d + (Vd(l(v)/4))1/d

”d

= C(v).

Fix one coordinate j ∈ [d]. We now show how to embed the hy-
percubes Q′

u1
, . . . , Q′

uk
into Qv . Consider some hypercube Q′

ui
:

1 ≤ i ≤ k. For each dimension j′ 6= j, we increase the length
of the corresponding side of Q′

ui
by the factor of sui . Addition-

ally, we decrease the length of the side of Q′
ui

corresponding to
the dimension j by the factor of sd−1

ui
. Let Ri denote the resulting

parallelepiped. Notice that for each dimension j′ 6= j, the length
of the corresponding side of parallelepiped Ri is exactly av . More-
over, the volume of Ri equals the volume of Q′

ui
. Therefore, we



can easily pack the parallelepipeds Ri, 1 ≤ i ≤ k, inside the hyper-
cube Qv , where the shortest side of Ri is placed along dimension
j.

As in the algorithm for embedding ultrametrics into the plane,
we need to ensure that these stretchings do not accumulate as we go
up the tree. To ensure this, we calculate, for each vertex v a value
g(v) ∈ [d]. When calculating the embedding of the hypercubes
Q′

u1
, . . . , Q′

uk
into the hypercube Qv , we contract the hypercubes

Q′
u1

, . . . , Q′
uk

along the dimension g(v) and expand them along
all the other dimensions.

Our next goal is to prove an analogue of Lemma 3, that shows
how to calculate the values g(v) so that the total distortion is not
accumulated.

We start with the following claim:

CLAIM 4. For each vertex u of the tree, 1 ≤ su ≤ 8c′.

PROOF. If u is the root of the tree, then su = 1 and the claim
is trivially true. Assume now that u is not the root, and let v be its
father. We denote the children of v by u1, . . . , uk, and we assume
that u = ui for some i ∈ [k].

Recall that su = av/bu, and that we have already observed that
ad

v =
Pk

j=1 bd
uj

, and thus su ≥ 1 clearly holds.
We now prove the second inequality. For the sake of conve-

nience, we denote V = (Vd(l(v)/4))1/d. Recall that bu = au +
V ≥ V .

On the other hand, from Corollary 1,

c′ ≥ ρd(C(v))/l(v) − 1

Therefore, we have that

ρd(C(v)) =

„

C(v)Γ(1 + d/2)

πd/2

«1/d

≤ 2c′l(v)

and thus

av = C(v)1/d ≤ 2c′l(v)

„

πd/2

Γ(1 + d/2)

«1/d

= 8c′V

Therefore, su = av/bu ≤ 8c′V/V ≤ 8c′.

For each vertex u of the tree, for each dimension j ∈ [d], we
recursively define a value hj(u), as follows. If u is the root, then
hj(u) = 1 for all j ∈ [d]. Consider now some vertex u which
is not the root, and let v be its father. Then we define hj(u) =

hj(v) · sαj(v)
u , where αj(v) is defined to be 1 if j 6= g(v), and it is

defined to be −(d− 1) if i = g(v). Notice that
Q

j∈[d] hj(u) = 1.
Fix any vertex u ∈ V (T ) and any dimension j ∈ [d]. Let Qu

be the hypercube of side au into which the vertices of Xu have
been embedded when u was processed by the algorithm. Then the
value hj(u) is precisely the stretch along the dimension j of Qu

in the final embedding. In other words, if we take a pair of points
x, y ∈ Qu such that xj = yj − 1, and for all the other coordinates
j′, xj′ = yj′ , then hj(u) is precisely the distance between x and
y in the final embedding. We next prove that we can calculate the
values g(v) in a way that ensures that that for each vertex u and
for each dimension j ∈ [d], hj(u) lies between (O(1/c′))

d and
(O(c′))

d.

LEMMA 9. We can compute in polynomial time values g(u) for
all u ∈ V (T ), such that for each u ∈ V (T ), for each dimension
j ∈ [d], (O(1/c′))

d ≤ hj(u) ≤ (O(c′))
d.

PROOF. If u is the root, then we arbitrarily set g(u) = 1.
Consider now some non-root vertex u, and let v be its parent.

Let j ∈ [d] be the dimension for which hj(v) is maximized. Then
we set g(u) = j.

CLAIM 5. For every vertex u, maxi{hi(u)}
mini{hi(u)} ≤ (8c′)d.

PROOF. The claim is trivially true for the root r since maxi{hi(r)}
mini{hi(r)} =

1. For any non-root vertex u, assume that the claim is true for its
parent v. Assume w.l.o.g. that h1(v) ≥ h2(v) ≥ · · · ≥ hd(v),
and g(u) = 1. Then h1(u) = h1(v)/sd−1

u , and for each i >
1, hi(u) = hi(v) · su. There are three cases to consider. If
h1(u) equals the maximum value among {hi(u)}d

i=1, then clearly
maxi{hi(u)}
mini{hi(u)} ≤ maxi{hi(v)}

mini{hi(v)} ≤ (8c′)d by the induction hypothe-

sis. If h1(u) equals the minimum value among {hi(u)}d
i=1, then

maxi{hi(u)}
mini{hi(u)} = h2(u)

h1(u)
=

sd
uh2(v)

h1(v)
≤ sd

u. Finally, if neither of the

above two cases happens, then maxi{hi(u)}
mini{hi(u)} = h2(u)

hd(u)
= h2(v)su

hd(v)su
≤

(8c′)d by the induction hypothesis.

Since
Qd

i=1 hi(u) = 1, we get that (O(c′))
−d ≤ hi(u) ≤

(O(c′))
d.

It is easy to see that the algorithm for computing the values g(u),
runs in polynomial time.

Let f : X → <d denote the resulting embedding produced by
the algorithm. The next two lemmas bound the maximum contrac-
tion and the maximum expansion of the distances in this embed-
ding.

LEMMA 10. For any pair u, u′ ∈ X of points, ‖f(u)−f(u′)‖∞ ≥
(O(c′))

−d
D′(u, u′).

PROOF. Fix any pair u, u′ ∈ X of vertices, and let v be their
least common ancestor in the tree T . Thus, D′(u, u′) = l(v). Let
z, z′ be the children of v such that u ∈ Xz and u′ ∈ Xz′ . As-
sume w.l.o.g. that sz > sz′ . Recall that Q′

z, Q
′
z′ contain empty

shell of width (Vd(l(v)/4))1/d/2 in which no vertices are embed-
ded. When Q′

z, Q
′
z′ are embedded inside Qv , they are contracted

by the factors sz, sz′ respectively along the ith dimension, where
i = g(v). Thus, in the embedding of Xv inside Qv , the distance
between the images of u and u′ along the ith dimension is at least:

Vd(l(v)/4)

sd−1
u

=

√
πl(v)

4(Γ(1 + d/2))1/dsd−1
u

≥ l(v)

2O(log d)sd−1
u

In the final embedding this distance is multiplied by the factor
hi(v). Thus, the final distance is at least

l(v)

2O(log d)sd−1
u

hi(v) =
l(v)

2O(log d)
hi(u) ≥ l(v)

(O(c′))d

LEMMA 11. For any pair u, u′ ∈ X of points, ‖f(u)−f(u′)‖∞ ≤
(O(c′))

d+1
D′(u, u′).

PROOF. Fix any pair u, u′ ∈ X of vertices, and let v be their
least common ancestor in the tree T , so that D′(u, u′) = l(v).

Recall that Qv is a hypercube of side av , and thus when the
embedding of Xv has been computed, the distance between the
images of u and u′ was at most av . In the final embedding this
distance increased by the factor of at most maxi∈[d] {hi(v)} ≤



(O(c′))
d, and thus the final distance is at most av (O(c′))

d. From
Corollary 1, using the same reasoning as in the proof of Claim 4,
we have that

av ≤ 2c′l(v)

√
π

(Γ(1 + d/2))1/d
≤ O(c′)l(v)

Thus, ‖f(u) − f(u′)‖∞ ≤ (O(c′))
d+1

l(v).

Combining the results of Lemma 10 and Lemma 11, we obtain
the following theorem.

THEOREM 6. For any d > 2, there is a polynomial time algo-
rithm that embeds any input ultrametric M into `d

2 with distortion
cO(d), where c is the optimal distortion of embedding M into `d

2 .

8. CONCLUSIONS AND OPEN PROBLEMS
In this paper we investigated the problem of embedding ultra-

metrics into low-dimensional spaces <d. In particular, for d = 2,
we provided two results. The first one was relative: a linear-time al-
gorithm which, given any ultrametric c-embeddable into the plane,
produces an embedding with distortion O(c3). The second result
was absolute: any n-point ultrametric can be embedded into the
plane with distortion

√
n.

The key question left open by this work is: is it possible to gen-
eralize our results to a larger class of (weighted) metrics ? In par-
ticular, it would be very interesting to design an algorithm for rel-
ative embeddings of (weighted) tree metrics. Such metrics are en-
countered in many applied areas, such as computational biology.
Similarly, it would be interesting to obtain an o(n)-distortion em-
bedding of weighted tree metrics into the plane (this problem has
been posed already in [2]).

Finally, it remains to determine what is the best possible distor-
tion of relative embeddings of ultrametrics into the plane that can
be computed in polynomial time. Our results show that the answer
is greater than c but smaller than O(c3), leaving a wide range of
possibilities.
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