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wavelength to each path, so that no two paths going through the same �berare assigned the same wavelength. Since state{of{the{art technology [10] allowsfor a limited number of wavelengths, the important engineering question to besolved is to establish communication so that the total number of wavelengthsused is minimized.The path coloring problem in trees has been proved to be NP{hard in [5], thusthe work on the topic mainly focuses on the design and analysis of approximationalgorithms. Known results are expressed in terms of the load L of P, i.e., themaximum number of paths that share a directed edge of T . Note that, for anyset of paths, its load is a lower bound on the optimal number of colors. Analgorithm that assigns at most 2L colors to any set of paths is implicit in thework of Raghavan and Upfal [9]. The best known upper bound for arbitrary treesis 5L=3 [6]. A randomized (1:613 + o(1)){approximation algorithm for trees ofbounded degree is presented in [2].The path coloring problem is still NP{hard when the input instances arerestricted to sets of paths on binary trees [5]. A randomized path coloring algo-rithm for binary trees is presented in [1]. This algorithm colors any set of pathsof load L on a binary tree (with some restrictions on its depth) using at most7L=5+o(L) colors. In [8], it is proved that there are sets of paths on binary treeswhose optimal path colorings require at least 5L=4 colors.The path coloring problem is still NP{hard when the input instances arerestricted to symmetric sets of paths on binary trees [3]. A set of paths P iscalled symmetric if it can be partitioned into disjoint pairs of symmetric paths,i.e., (u; v) and (v; u). Symmetric sets of paths are important since many serviceswhich are supported by WDM networks (or are expected to be supported in thefuture) require bidirectional reservation of bandwidth. Algorithms that colorany symmetric set of paths of load L on a tree (not necessarily binary) with3L=2 colors can be obtained by considering each pair of symmetric paths as anundirected one and then applying an algorithm for coloring undirected paths onundirected trees [5,9]. For binary trees, the randomized algorithm presented in[1] gives the best known upper bound in this case. In [3] it is also proved thatthere are symmetric sets of paths on binary trees whose optimal path coloringsrequire at least 5L=4 colors.The fractional path coloring problem is a natural relaxation of path coloring.Given a set of paths on a tree, a solution of the path coloring problem is also asolution for the fractional path coloring problem with cost equal to the numberof colors in the solution of path coloring. Furthermore, the lower bound proofsin [3] and [8] still hold for fractional path coloring. Finding a fractional pathcoloring of optimal cost can be solved in polynomial time in trees of boundeddegree [2]. Fractional path colorings are important since they can be used toobtain path colorings using a number of colors which is provably close to thecost of the fractional solution by applying randomized rounding techniques [2,7]. Moreover, it is interesting to prove upper bounds on the cost of optimalfractional path colorings in terms of the load, since they give insight to the path



coloring problem. In [2], the result of [1] was extended to prove that any set ofpaths of load L on a binary tree has a fractional path coloring of cost 7L=5.In this paper, we consider locally-symmetric sets of paths on binary trees. Aset of paths P on a tree is called locally-symmetric if, for any two nodes u andv of the tree with distance at most 2, the number of paths coming from v andgoing to u equals the number of paths coming from u and going to v. Clearly,the class of locally-symmetric sets of paths on a tree T contain the class ofsymmetric sets of paths on T . We prove that any locally-symmetric set of pathsof load L on a binary tree has a fractional path coloring of cost at most 1:367L.This fractional path coloring has some additional nice properties, and, using thisresult and techniques of [1], we obtain a randomized algorithm that colors anylocally-symmetric set of paths of load L on a binary tree (with some restrictionson its depth) using 1:367L+ o(L) colors, with high probability. Since the loadof a set of paths is a lower bound on the minimum number of colors su�cientfor coloring it, our algorithm is an (1:367+ o(1))-approximation algorithm.The rest of the paper is structured as follows. In Section 2 we give formalde�nitions for the (fractional) path coloring problem. In Section 3 we discusssome properties of locally-symmetric sets of paths which are useful in the analysisof our algorithms. We describe the fractional path coloring algorithm in Section4 and present its analysis in Section 5. We discuss the extension of the result forfractional path coloring to path coloring in Section 6.2 Fractional path coloringsThe graph coloring problem can be considered as �nding an integral coveringof the vertices of a graph by independent sets of unit weight so that the totalweight (or cost) is minimized. Given a graph G = (V;E), this means solving thefollowing integer linear program:minimize PI2I x(I)subject to PI2I:v2I x(I) � 1 v 2 Vx(I) 2 f0; 1g I 2 Iwhere I denotes the set of the independent sets of G.This formulation has a natural relaxation into the following linear program:minimize PI2I �x(I)subject to PI2I:v2I �x(I) � 1 v 2 V�x(I) � 0 I 2 IThe corresponding combinatorial problem is called the fractional coloringproblem. If �x is a valid weight assignment over the independent sets of the graphG, we call it a fractional coloring of G.Given a set of paths P on a graph G, we de�ne an independent set of paths asa set of pairwise edge{disjoint paths. Equivalently, we may think of the con
ictgraph of P which is the graph having a node for each path of P and edges between



any two nodes corresponding to con
icting (i.e., not edge{disjoint) paths; anindependent set of paths corresponds to an independent set on the con
ict graph.The fractional path coloring problem is de�ned as the fractional coloring problemon the con
ict graph.In [2] it is proved that optimal fractional path colorings in bounded{degreetrees can be computed by solving a linear program of polynomial (in terms ofthe load of the set of paths and the size of the tree) size. These techniques canbe extended to graphs of bounded degree and bounded treewidth. A polynomialtime algorithmfor computing optimal fractional path colorings in rings is implicitin [7].Although computing an optimal fractional path coloring of a locally-symmetricset of paths P on a binary tree can be done in polynomial time, in this paperwe are interested in exploring the relation of the cost of the optimal fractionalpath coloring with the load of P.3 Properties of locally-symmetric sets of pathsIn this section we give some useful properties of locally-symmetric sets of pathson binary trees. Let T be a binary tree. Without loss of generality, we assumethat all nodes of T have degree either 1 or 3. We denote by r (root) a leaf nodeof T . Starting from r, we assign labels to the nodes of the tree by performing abreadth-�rst-search (r is assigned 0). For each non-leaf node v, we will denoteby p(v) the parent of v, and by l(v) and r(v) the left and right child of v,respectively.Let P be a locally-symmetric set of paths. We may assume that P is normal,i.e., it satis�es the following properties:{ It has full load L at each directed edge.{ For every node u, the paths that originate or terminate at u, appear on onlyone of the three edges adjacent to u.If the initial set of paths is not normal, we can transform it to a normalone by �rst adding pairs of symmetric single{hop paths on the edges of the treewhich are not fully{loaded, and then, for each non-leaf node v, by merging pathsterminating at v with paths originating at v that do not traverse the same edgein opposite directions. It can be easily veri�ed that this can be done in such away that the resulting set of paths is locally-symmetric.Claim. Let P be a locally-symmetric set of paths on a binary tree T with loadL. There exists a normal locally-symmetric set of paths P0 such that if P 0 has a(fractional) coloring of cost c, then P has a (fractional) coloring of cost at mostc. We partition the set of paths of P that go through v to the following disjointsubsets: the set M1v of the paths that come from p(v) and go to l(v), the set M2vof the paths that come from l(v) and go to p(v), the set M3v of the paths thatcome from p(v) and go to r(v), the set M4v of the paths that come from r(v)
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vl(v) r(v)12 3 456 7 8(b) Scenario IIFig. 1. The two cases for paths touching a non-leaf node v. Numbers represent groupsof paths (number 1 implies the set of paths M1v , etc.).and go to p(v), the set M5v of the paths that come from l(v) and go to r(v), andthe set M6v of the paths that come from r(v) and go to l(v). Since P is normal,we only need to consider two cases for the set Pv of paths of P touching nodev. These cases are depicted in Figure 1.{ Scenario I: The paths of Pv originating from or terminating at v touchnode p(v). We denote by M7v the set of paths that come from p(v) and stopat v and by M8v the set of paths that originate from v and go to p(v).{ Scenario II: The paths of Pv originating from or terminating at v touch achild node of v (wlog r(v)). We denote by M7v the set of paths that originatefrom v and go to r(v) and by M8v the set of paths that come from r(v) andstop at v.Claim. Let P be a normal locally-symmetric set of paths on a binary tree T withload L. Let v be a non-leaf node of T and Pv be the subset of P that containsthe paths touching v.{ If Pv belongs to Scenario I, then jM1v j = jM2v j = jM3v j = jM4v j � L=2,jM5v j = jM6v j = L� jM1v j, and jM7v j = jM8v j = L� 2jM1v j.{ If Pv belongs to Scenario II, then jM1v j = jM2v j � L=2, jM3v j = jM4v j =jM5v j = jM6v j = L� jM1v j, and jM7v j = jM8v j = 2jM1v j � L.4 The algorithmIn this section we present our fractional path coloring algorithm. It uses a pa-rameter D 2 [2=3; 2+p24 ].Let T be a binary tree and P a locally-symmetric set of paths on T . Wedenote by I the set of all independent sets of paths in P. Given an edge e, we



denote by ISe the set of independent sets of I that contain exactly one pathtraversing e in some direction and by IDe the set of independent sets of I thatcontain two paths traversing e (in opposite directions).De�nition 1 (Property 1). A weight assignment x on the independent setsof I satis�es Property 1 at a node v if{ Property 1 is satis�ed on each node u which has label smaller than the labelof v, and{ either v is a leaf di�erent from the root or for any path p traversing an edgee between v and a child of v in some direction, it isXI2ISe :p2I x(I) = 1�D:De�nition 2 (Property 2). A weight assignment x on the independent setsof I satis�es Property 2 at a node v if{ Property 2 is satis�ed on each node u which has label smaller than the labelof v, and{ either v is a leaf di�erent from the root or for any two paths p; q traversingan edge e between v and a child of v in opposite directions, it isXI2IDe :p;q2I x(I) = DL :De�nition 3 (Property 3). A weight assignment x on the independent sets ofI satis�es Property 3 at a node v if for any independent set I of I that containsat least one path touching neither v nor nodes of label smaller than v's, it isx(I) = 0.De�nition 4 (Property 4). A weight assignment x on the independent setsof I satis�es Property 4 ifXI2I x(I) � 4D2 � 4D + 43D L:Our algorithm assigns weights x to the independent sets of I such that x isa valid fractional coloring of small cost.First, the algorithm performs the following initialization step:{ For each independent set I 2 I consisting only of one path that terminatesat or originates from r, it sets xr(I) = 1�D.{ For each independent set I 2 I consisting only of two opposite directed pathsone terminating at and the other originating from r, it sets xr(I) = D=L.{ For any other independent set I 2 I, it sets xr(I) = 0.



Then, for i = 1; : : : ; n � 1 (where n is the number of nodes of the tree) , thealgorithm executes the procedure Fract-Color on node v with label i.The procedure Fract-Color at a node v takes as input the set Pv of pathstouching node v and a non-negative weight assignment xp(v) which satis�es Prop-erties 1, 2 and 3 at node p(v) and Property 4. If v is a leaf, the procedure Fract-Color sets the weight assignment xv equal to xp(v) and stops. Otherwise, itcomputes a new non-negative weight assignment xv which satis�es Properties 1,2 and 3 at node v and Property 4. It also sets the weight assignments xu for allthe nodes u with label smaller than v's equal to xv.Finally, the algorithm outputs a weight assignment x = xu where u is thenode with label n� 1.Fract-Colorwill be precisely described in the next section. For now, we useits input-output speci�cation to show inductively that the algorithm producesa weight assignment x which satis�es Properties 1, 2 and 3 at each node ofT and Property 4. Clearly, after the initialization step, the assignment xr isnon-negative and satis�es Properties 1, 2 and 3 at node r. Also, under weightassignment xr, there are 2L independent sets with weight 1�D, L2 independentsets with weight D=L while all other independent sets have zero weight. Thus,Property 4 is satis�ed sinceXI2I xr(I) = (2�D)L < 4D2 � 4D + 43D L:Assuming that the execution of Fract-Color at a node u with label i hasproduced a non-negative weight assignment xu that satis�es Properties 1, 2 and3 at u and Property 4, we can easily show that the execution of Fract-Colorat a node v with label i + 1 creates a non-negative weight assignment xv thatsatis�es Properties 1, 2 and 3 at node v and Property 4. By the description ofFract-Color, we just have to show that the weight assignment xu which ispart of the input of the execution of Fract-Color at node v satis�es Properties1, 2 and 3 at node p(v) and Property 4. Property 4 is obviously satis�ed. Sinceeither p(v) = u or p(v) has a label smaller than u's, xu satis�es Properties 1, 2and 3 at p(v).Let p be a path traversing an edge e between some node v and a child of v insome direction. Note that p is contained only in independent sets of the disjointsets ISe and IDe . Furthermore, x satis�es Properties 1, 2 and 3 at node v andthere are L paths that traverse the edge e in opposite direction to p. We obtainthat XI2I:p2I x(I) = XI2ISe :p2I x(I) + XI2IDe :p2I x(I) = 1:Also, x is non-negative. Thus, the algorithm speci�ed above �nds a fractionalcoloring x of the paths of P of cost at most 4D2�4D+43D L. In the following section,we describe the procedure Fract-Color and prove that it works correctly (i.e.,as speci�ed above) provided that D 2 [2=3; 2+p24 ]. Substituting D = 2+p24 , weobtain the following theorem.



Theorem 1. For any locally-symmetric set of paths P of load L on a binarytree T , there exists a fractional coloring of cost at most 1:367L.5 The procedure Fract-ColorLet T be a binary tree and P a normal locally-symmetric set of paths on T .We show how the procedure Fract-Color works when executed at a non{leafnode v. Let Pv be the set of paths of P touching node v. We have to considertwo cases: one for Scenario I and one for Scenario II. Due to lack of space, wepresent only the case of Scenario I here.We denote by Iv the set of independent sets of I that contain only pathstouching nodes with label smaller than v. We denote by I0v the set of independentsets in Iv that do not contain paths traversing the edge between v and its parentin some direction. We denote by Iiv for i = 1; 2; 3; 4; 7;8, the set of independentsets of Iv which contain a path p ofM iv and no path traversing the edge betweenv and its parent in opposite direction to p, and by Iijv the set of independentsets of I which contain a path of M iv and a path of M jv , such that paths of M ivtraverse the edge between v and its parent in opposite direction than paths inM jv .When executed at v, Fract-Color takes as input the set Pv and a non-negative weight assignment xp(v)(I) on the independent sets of I that satis�esProperties 1, 2, and 3 at p(v) and Property 4. Fract-Color computes a non-negative weight assignment xv(I) on the independent sets of I that satis�esProperties 1, 2, and 3 at v and Property 4. This is done in the following way:{ For each independent set I0 of I1v and I4v and each path p of M5v , we set toxv(I) = �L�jM1vjxp(v)(I 0) the weight of the independent set consisting of thepaths of I 0 and path p and xv(I 0) = (1� �)xp(v)(I0).{ For each independent set I0 of I2v and I3v and each path p of M6v , we set toxv(I) = �L�jM1vjxp(v)(I 0) the weight of the independent set consisting of thepaths of I 0 and path p and xv(I 0) = (1� �)xp(v)(I0).{ For each independent set I0 of I14v and each path p ofM5v , we set to xv(I) =�L�jM1v jxp(v)(I 0) the weight of the independent set consisting of the paths ofI0 and path p and xv(I 0) = (1� �)xp(v)(I 0).{ For each independent set I0 of I23v and each path p ofM6v , we set to xv(I) =�L�jM1v jxp(v)(I 0) the weight of the independent set consisting of the paths ofI0 and path p and xv(I 0) = (1� �)xp(v)(I 0).{ For each independent set I0 of I18v and I47v and each path p of M5v , we set toxv(I) = 
L�jM1vjxp(v)(I 0) the weight of the independent set consisting of thepaths of I 0 and path p and xv(I 0) = (1� 
)xp(v)(I 0).{ For each independent set I0 of I27v and I38v and each path p of M6v , we set toxv(I) = 
L�jM1vjxp(v)(I 0) the weight of the independent set consisting of thepaths of I 0 and path p and xv(I 0) = (1� 
)xp(v)(I 0).



{ Let k1 = XI2I0v[I7v[I8v[I78v xp(v)(I)and k2 = 2n(L � jM1v j) + D(L � jM1v j)2L :{ For each independent set I0 of I0v [ I7v [ I8v [ I78v and each path p of M5v andM6v , we set to xv(I) = nmaxfk1;k2gxp(v)(I 0) the weight of the independent setconsisting of the paths of I0 and path p.{ For each independent set I0 of I0v [I7v [I8v [I78v and each pair of paths p; q ofM5v and M6v respectively, we set to xv(I) = Dmaxfk1;k2gLxp(v)(I 0) the weightof the independent set consisting of the paths of I0 and paths p and q.{ For each independent set I of I0v [ I7v [ I8v [ I78v we set xv(I) = maxf0; 1�k2k1 gxp(v)(I).{ For each path p of M5v and M6v , we set to xv(I) = nmaxf0; 1 � k1k2 g theweight of the independent set consisting only of p.{ For each pair of paths p; q of M5v and M6v respectively, we set to xv(I) =DL maxf0; 1� k1k2g the weight of the independent set consisting only of p andq.{ For all other independent sets I (i.e., independent sets that contain at leastone path touching only nodes with label greater than v's) we set xv(I) = 0.Now, we have to set values to the parameters �; �; 
; n so that Fract-Coloris correct (i.e., it matches the input-output speci�cation given in the previoussection). The next lemma gives su�cient conditions for this purpose.Lemma 1 (Correctness conditions). If0 � �; �; 
 � 1 (1)n � 0 (2)�L(1�D) + �jM1v jD + 
(L � 2jM1v j)D = D(L � jM1v j) (3)��jM1v j2D + nL(L � jM1v j) = (L � jM1v j)((1�D)L �DjM1v j) (4)2n(L� jM1v j) � D2 � 4D + 43D L � (4� 2D)jM1v j+ 3DjM1v j2L (5)then Fract-Color is correct.Proof. It can be easily veri�ed that conditions (1) and (2) and the fact that theweight assignment xp(v) is non-negative guarantee that xv is non-negative. Also,by the de�nition of Fract-Color, xv satis�es Property 3.By making calculations, it can be veri�ed thatXI2I xv(I) =XI2I xp(v)(I) +maxf0; k2� k1g:



If k1 � k2, xv satis�es Property 4 since xp(v) satis�es Property 4. If k1 < k2,condition (5) and the fact that xp(v) satis�es Property 4 guarantee that xv satisfyProperty 4 as well.Now, in order to prove Properties 1 and 2 at node v, we have to prove thatfor any edge e between a node u with label at most the label of v and a child ofu, for any path p traversing e, it is PI2ISe :p2I xv(I) = 1 �D and for any set ofpaths p; q traversing e in opposite directions, it isPI2IDe :p;q2I xv(I) = D=L. Wehave to distinguish between two cases for e: (i) e is an edge between a node uwith label smaller than v's and a child of u and (ii) e is an edge between v anda child of v.First, we give the proof for case (i). Given an independent set I of Iv, wedenote by Jv(I) the set of independent sets that contain all paths of I, (possibly)paths of M5v and M6v , and no other paths. Since xv satis�es Property 3 at nodev, it is xv(I) = 0 for any independent set I not belonging to SI2Iv Jv(I). Bycarefully reading the procedure Fract-Color, we can see that the weight of Iunder xp(v) equals the sum of weights of the independent sets in Jv(I) under xv.Also, since xp(v) satis�es Property 3 at p(v), it is xp(v) = 0 for all independentsets not belonging to Iv. Furthermore, xp(v) satis�es Properties 1 and 2 at p(v).We obtain that XI2ISe :p2I xv(I) = XI2ISe \Iv :p2I XI02Jv (I)xv(I 0)= XI2ISe \Iv :p2I xp(v)(I)= XI2ISe :p2I xp(v)(I) = 1�Dand XI2IDe :p;q2I xv(I) = XI2IDe \Iv :p;q2I XI02Jv (I)xv(I0)= XI2IDe \Iv :p;q2I xp(v)(I)= XI2IDe :p;q2I xp(v)(I) = D=L:Proving case (ii) is lengthy. We have to prove it for e 2 f(v; l(v)); (v; r(v))g,and, in each case, we have to dinstinguish between subcases for paths p and q.We will just show that for edge e = (v; l(v)) for a path p 2 M5v and a pathq 2M1v , it isPI2IDe :p;q2I xv(I) = D=L.XI2IDe :p;q2I xv(I) = XI 2 I1v : q 2 II0 2 Jv(I) : p 2 I0 xv(I 0) + XI 2 I14v : q 2 II0 2 Jv(I) : p 2 I0 xv(I 0)



+ XI 2 I18v : q 2 II0 2 Jv(I) : p 2 I0 xv(I0)= �L � jM1v j XI2I1v :q2I xp(v)(I) + �L � jM1v j XI2I14v :q2I xp(v)(I)+ 
L � jM1v j XI2I18v :q2I xp(v)(I)= �L(1�D) + �DjM1v j+ 
D(L � 2jM1v j)L(L � jM1v j)= D=LThe last equality follows by condition (3). Conditions (3) and (4) are enoughto prove all possible subcases. utIn order to prove that Fract-Color is correct, we will compute values for�; �; 
; n such that the correctness conditions (1){(5) of Lemma 1 are satis�ed.We distinguish between two cases according to the size of M1v .CASE I. jM1v j � 1�DD L. In this case, we have the following settings� = 1� = (L� jM1v j)(DjM1v j � (1�D)L)DjM1v j2
 = L(1 �D)jM1v jDn = 0Clearly, � satis�es condition (1) and n satis�es condition (2). By simplecalculations, we obtain that (3), (4), and (5) are also satis�ed. Since jM1v j �1�DD L, it is � � 0. Also,� � 1 = (L � jM1v j)(DjM1v j � (1�D)L) �DjM1v j2DjM1v j2= �2DjM1v j2 + LjM1v j � (1�D)L2DjM1v j2The expression in the last line is always non-positive provided thatD 2 h2=3; 2+p24 i.Thus, � satis�es condition (1). Also, since 1�DD L � jM1v j � L=2, 
 satis�es (1).CASE II. jM1v j � 1�DD L. In this case, we have the following settings� = DjM1v j(1�D)L� = 0




 = 1n = 1�D � DjM1v jLClearly, � and 
 satisfy condition (1). By making simple calculations, we ob-tain that (3), (4), and (5) are satis�ed. Since jM1v j � 1�DD L, n satis�es condition(2). Also, since 0 � jM1v j � 1�DD L, � satis�es condition (1).6 Extensions to the path coloring problemIn this section we outline our path coloring algorithm. Similar ideas are used in[1] to prove a weaker result for general (i.e., non-locally-symmetric) sets of pathson binary trees. Let T be a binary tree and P a normal locally-symmetric set ofpaths on T . Our algorithm uses a rational parameter D 2 [2=3; 2+p24 ). We startwith a few de�nitions.De�nition 5. Let v be a node of T di�erent from the root and P a normallocally-symmetric set of paths. A probability distribution Q over all proper color-ings of paths of P traversing the edge e between v and its parent with (2�D)Lcolors is weakly uniform if for any two paths p; q 2 P that traverse e in oppositedirections, the probability that p and q have the same color is D=L.Let v be a non-leaf node of T and let C be a coloring of paths of P thattraverse the edge e between v and its parent. Let � be a color used by C. � iscalled single color if it is used in only one path traversing e and double color ifit is used in two paths traversing e in opposite directions. We denote by Aiv theset of single colors assigned to paths in M iv, and by Aijv the set of double colorsassigned to paths in M iv and M jv .De�nition 6. Let v be a non-leaf node of T and P a normal locally-symmetricset of paths. A weakly uniform probability distribution Q over all proper coloringsof paths of P traversing the edge e between v and its parent with (2�D)L colorsis strongly uniform if jAijv j = DjM ivjjM jv jLfor any pair i; j such that paths of M iv traverse e in opposite direction to pathsof M jv .First, the algorithm performs the following initialization step to produce arandom coloring of the paths touching r with (2�D)L colors according to theweakly uniform probability distribution. It colors the paths originating from theroot r. It selects uniformly at random without replacement DL colors of the Lcolors used to color the paths originating from r and assigns them to DL pathswhich are selected uniformly at random without replacement from the L pathsterminating at r. It also assigns (1 �D)L new colors to the paths terminatingat r which have not been colored.



Then, for i = 1; : : : ; n� 1, the algorithm executes the procedures Recolorand Color at node v with label i.The procedure Recolor at a node v takes as input a random coloring Cvof the paths traversing the edge between v and its parent with (2�D)L colorsaccording to the weakly uniform probability distribution. Recolor stops if v isa leaf. Otherwise, it produces a new random coloring C0v of the paths traversingthe edge between v and its parent with (2�D)L colors according to the stronglyuniform probability distribution.The procedure Color at a node v takes as input a random coloring C0v ofthe paths traversing the edge between v and its parent with (2 � D)L colorsaccording to the strongly uniform probability distribution. Color stops if v isa leaf. Otherwise, it produces a random coloring C00v of the paths touching nodev in such a way that:{ The restriction Cl(v) of C00v on the paths traversing the edge between v and l(v)is a random coloring with (2 �D)L colors according to the weakly uniformprobability distribution.{ The restriction Cr(v) of C00v on the paths traversing the edge between v andr(v) is a random coloring with (2 � D)L colors according to the weaklyuniform probability distribution.{ The coloring C00v uses at most 4D2�4D+43D colors.Finally, the algorithm uses a deterministic algorithm to color the set of pathswhose color has been changed by Recolor.In the following we brie
y discuss the main ideas used for the precise def-inition of procedures Recolor and Color. We remark that the proceduresRecolor and Color can be implemented to run in time polynomial in L,thus, our algorithm runs in time polynomial in L and the number of nodes ofthe tree.Let v be a non-leaf node of T . Observe that if Cv is a random coloring of thepaths traversing the edge between v and its parent, then the numbers jAijv j arerandom variables with expectationE [jAijv j] = jM ivjjM jv jDL :In [1], it is shown that jAijv j's follow a hypergeometrical-like distribution and aresharply concentrated around their expectations. The procedure Recolor usesthis property and, with high probability, by recoloring a small number of pathstraversing the edge between v and its parent, it produces a random coloring C0vwhich follows the strongly uniform probability distribution. This is done in sucha way that after all executions of Recolor the load of the paths of P whosecolor has been changed at least once is o(L) with high probability.The procedure Color mimics Fract-Color in some sense. During its ex-ecution at a non-leaf node v such that Pv belongs to Scenario I (the case ofScenario II is similar to Scenario II of Fract-Color) it colors the paths of M5vand M6v using colors of Aiv and Aijv in such a way that the probability that two



paths traversing one of the edges between v and a child of v in opposite directionsare assigned the same color equals D=L (recall that this equals the sum of theweights xv produced by Fract-Color of the independent sets containing bothpaths). The analysis is much similar to the analysis of Fract-Color. By work-ing on the details of the analysis, we conclude to similar correctness conditionswith those of Fract-Color.We now state our result for the path coloring of locally-symmetric sets ofpaths.Theorem 2. There exists a randomized polynomial-time algorithm which, forany constant � < 1=3, colors any locally-symmetric set of paths of load L ona binary tree of depth at most L�=8, using at most 1:367L + o(L) colors, withprobability at least 1� exp ��
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